931 resultados para Crystallization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we consider the changing relationships between French ‘have-not’ movements (the unemployed, the homeless, undocumented persons) and the main organizations involved in the alter-globalization field from 1995 to 2005. We demonstrate how the building of the global space of protest in France was punctuated by two moments. The first corresponds to the gradual convergence of social actors around the issue of globalization, translated into a renewal of activists’ discourses, the development of multiple scales of mobilizations and a functional division of tasks among actors. The second moment corresponds more to the crystallization of divisions among them. These divisions are articulated around different conceptions of what the struggle's aims should be (a fight against liberalism or an alternative experiment) and differences regarding the sense of belonging to the global space of protest (transnational networks or national territory). The history of convergence placed the have-nots at the heart of alter-globalist mobilizations, whereas the history of divergence translated into a ‘decentering’ of the place of the have-nots within this space. Their progressive marginalization also reveals the transformations of struggles against globalization in France.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ethylene terephthalate) (PET) based nanocomposites have been prepared with single walled carbon nanotubes (SWNTs) through an ultrasound assisted dissolution-evaporation method. Differential scanning calorimetry studies showed that SWNTs nucleate crystallization in PET at weight fractions as low as 0.3%, as the nanocomposite melt crystallized during cooling at temperature 24 °C higher than neat PET of identical molecular weight. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. Mechanical properties of the PETSWNT nanocomposites improved as compared to neat PET indicating the effective reinforcement provided by nanotubes in the polymer matrix. Electrical conductivity measurements on the nanocomposite films showed that SWNTs at concentrations exceeding 1 wt% in the PET matrix result in electrical percolation. Comparison of crystallization, conductivity and transmission electron microscopy studies revealed that ultrasound assisted dissolution-evaporation method enables more effective dispersion of SWNTs in the PET matrix as compared to the melt compounding method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Fe–Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe–Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic properties of nano-crystalline soft magnetic alloys have usually been correlated to structural evolution with heat treatment. However, literature reports pertaining to the study of nano-crystalline thin films are less abundant. Thin films of Fe40Ni38B18Mo4 were deposited on glass substrates under a high vacuum of ≈ 10−6 Torr by employing resistive heating. They were annealed at various temperatures ranging from 373 to 773K based on differential scanning calorimetric studies carried out on the ribbons. The magnetic characteristics were investigated using vibrating sample magnetometry. Morphological characterizations were carried out using atomic force microscopy (AFM), and magnetic force microscopy (MFM) imaging is used to study the domain characteristics. The variation of magnetic properties with thermal annealing is also investigated. From AFM and MFM images it can be inferred that the crystallization temperature of the as-prepared films are lower than their bulk counterparts. Also there is a progressive evolution of coercivity up to 573 K, which is an indication of the lowering of nano-crystallization temperature in thin films. The variation of coercivity with the structural evolution of the thin films with annealing is discussed and a plausible explanation is provided using the modified random anisotropy model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultra thin films based on CoFe were prepared from a composite target employing thermal evaporation. The microstructure of the films was modified by thermal annealing. The relationship between microstructure and magnetic properties of the films was investigated using techniques like glancing angle X-ray diffraction (GXRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The GXRD and TEM investigations showed an onset of crystallization of CoFe at around 373 K. The magnetic softness of the films improved with thermal annealing but at higher annealing temperature it is found to be deteriorating. Annealing inducedmodification of surface morphology of the alloy thin filmswas probed by atomic force microscopy (AFM). Surface smoothening was observed with thermal annealing and the observed magnetic properties correlate well with surface modifications induced by thermal annealing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Qualität ökologischer Produkte wird über den Prozess und nicht am Produkt selbst bestimmt. Die zunehmende Nachfrage nach ökologischen Produkten fordert Methoden, die den Prozess am Produkt zeigen (Authentizitätsprüfung). Eine Literaturstudie für die vorliegende Habilitationsschrift ergab, dass ganzheitliche Verfahren sich dazu besonders eignen. Zu solchen ganzheitlichen Verfahren gehört die Biokristallisation. Bei diesem Verfahren kristallisiert eine Mischung aus Probe und CuCl2 auf einer Glasplatte zu einem Bild, das sowohl visuell, als auch computergestützt ausgewertet werden kann. Es wurden zunächst alle Schritte im Labor dokumentiert und entsprechende Standardarbeitsanweisungen erstellt. Mit einem eigens entwickelten Computerprogramm werden die Bedingungen während der Probenaufbereitung und Kristallisation für jede Probe und jedes Bild erfasst. Mit einer Texturanalyse können auch die für diese Arbeiten erstellte große Menge an Bildern ausgewertet und die Ergebnisse statistisch bearbeitet werden. Damit ist es möglich das Verfahren und Methoden für Weizen- und Möhrenproben zu charakterisieren. Es wurden verschiedene Einflussgrößen untersucht. Das Verfahren ist besonders gegenüber Änderungen in der Probenvorbereitung (z.B. Vermahlung, Mischungsverhältnis) empfindlich. Es wurde sowohl die Methodenstreuung, als auch der Anteil einzelner Schritte an der Gesamtstreuung für Weizen-, Möhren- und Apfelproben ermittelt. Die Verdampfung und Kristallisation hat den größten Anteil an der Gesamtstreuung. Die Durchführung eines Laboreignungstests zeigte, dass die so dokumentierten und charakterisierten Methoden in anderen Laboratorien erfolgreich eingesetzt werden können. Das Verfahren wurde für die nominale Unterscheidung von Weizen-, Möhren- und Apfelproben aus unterschiedlichem Anbau und Verarbeitungsschritten eingesetzt. Weizen-, Möhren- und Apfelproben aus definiertem Anbau können signifikant unterschieden werden. Weizen-, Möhren- und Apfelproben vom Erzeuger (Markt) konnten im Paarvergleich (ökologisch, konventionell) teilweise signifikant getrennt werden. Das Verfahren ist auch für die Charakterisierung von verarbeiteten Proben einsetzbar. Es konnte der Einfluss von Saftherstellung, Erwärmung und Alterung signifikant gezeigt werden. Darüber hinaus lässt sich das Verfahren auf weitere Probenarten anwenden. Das Verfahren arbeitet ganzheitlich, d.h. es werden keine Einzelstoffe analytisch bestimmt, sondern als Ergebnis wird ein Bild erhalten. Die Textur- und Struktureigenschaften dieses Bildes können mit standardisierten Methoden ausgewertet werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rejection of the European Constitution marks an important crystallization point for debate about the European Union (EU) and the integration process. The European Constitution was envisaged as the founding document of a renewed and enlarged European Union and thus it was rather assumed to find wide public support. Its rejection was not anticipated. The negative referenda in France and the Netherlands therefore led to a controversial debate about the more fundamental meaning and the consequences of the rejection both for the immediate state of affairs as well as for the further integration process. The rejection of the Constitution and the controversy about its correct interpretation therefore present an intriguing puzzle for political analysis. Although the treaty rejection was taken up widely in the field of European Studies, the focus of existing analyses has predominantly been on explaining why the current situation occurred. Underlying these approaches is the premise that by establishing the reasons for the rejection it is possible to derive the ‘true’ meaning of the event for the EU integration process. In my paper I rely on an alternative, discourse theoretical approach which aims to overcome the positivist perspective dominating the existing analyses. I argue that the meaning of the event ‘treaty rejection’ is not fixed or inherent to it but discursively constructed. The critical assessment of this concrete meaning-production is of high relevance as the specific meaning attributed to the treaty rejection effectively constrains the scope for supposedly ‘reasonable’ options for action, both in the concrete situation and in the further European integration process more generally. I will argue that the overall framing suggests a fundamental technocratic approach to governance from part of the Commission. Political struggle and public deliberation is no longer foreseen as the concrete solutions to the citizens’ general concerns are designed by supposedly apolitical experts. Through the communicative diffusion and the active implementation of this particular model of governance the Commission shapes the future integration process in a more substantial way than is obvious from its seemingly limited immediate problem-solving orientation of overcoming the ‘constitutional crisis’. As the European Commission is a central actor in the discourse production my analysis focuses on the specific interpretation of the situation put forward by the Commission. In order to work out the Commission’s particular take on the event I conducted a frame analysis (according to Benford/Snow) on a body of key sources produced in the context of coping with the treaty rejection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta Monografía se centra en mostrar cómo el intento por conservar la identidad colectiva de la Liga de los Estados Árabes impide ceder ante el deseo de Somalilandia de ser reconocida como Estado independiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si