991 resultados para Cell aggregation
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
This work addresses fundamental issues in the mathematical modelling of the diffusive motion of particles in biological and physiological settings. New mathematical results are proved and implemented in computer models for the colonisation of the embryonic gut by neural cells and the propagation of electrical waves in the heart, offering new insights into the relationships between structure and function. In particular, the thesis focuses on the use of non-local differential operators of non-integer order to capture the main features of diffusion processes occurring in complex spatial structures characterised by high levels of heterogeneity.
Resumo:
This study examined the role of heparan sulfate proteoglycans (HSPGs) in neural lineage differentiation of human mesenchymal stem cells (hMSCs). Several HSPGs were identified as potential new targets controlling neural fate specification and may be applied to the development of improved models to examine and repair brain damage. hMSCs were characterised throughout extended in vitro expansion for neural lineage potential (neurons, astrocytes, oligodendrocytes) and differentiated using terminal differentiation and intermediate sphere formation. Brain damage and neurological disorders caused by injury or disease affect a large number of people often resulting in lifelong disabilities. Multipotent mesenchymal stem cells have a large capacity for self-renewal and provide an excellent model to examine the regulation and contribution of both stem cells and their surrounding microenvironment to the repair of neural tissue damage.
Resumo:
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes.
Resumo:
With the extensive use of rating systems in the web, and their significance in decision making process by users, the need for more accurate aggregation methods has emerged. The Naïve aggregation method, using the simple mean, is not adequate anymore in providing accurate reputation scores for items [6 ], hence, several researches where conducted in order to provide more accurate alternative aggregation methods. Most of the current reputation models do not consider the distribution of ratings across the different possible ratings values. In this paper, we propose a novel reputation model, which generates more accurate reputation scores for items by deploying the normal distribution over ratings. Experiments show promising results for our proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Aim Paediatric haematopoietic stem cell donors undergo non-therapeutic procedures and endure known and unknown physical and psychosocial risks for the benefit of a family member. One ethical concern is the risk they may be pressured by parents or health professionals to act as a donor. This paper adds to what is known about this topic by presenting the views of health professionals. Methods This qualitative study involved semi-structured interviews with 14 health professionals in Australasia experienced in dealing with paediatric donors. Transcripts were analysed using established qualitative methodologies. Results Health professionals considered that some paediatric donors experience pressure to donate. Situations were identified that were likely to increase the risk of pressure being placed on donors and views were expressed about the ethical ‘appropriateness’ of these practices within the family setting. Conclusions Children may be subject to pressure from family and health professionals to be tested and act as donors, Therefore, our ethical obligation to these children extends to implementing donor focused processes – including independent health professionals and the appointment of a donor advocate – to assist in detecting and addressing instances of inappropriate pressure being placed on a child.
Resumo:
Background The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. Methods NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. Results Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. Conclusions Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena.
Resumo:
This study aimed to develop a 3-Dimensional (D) hydrogel system for the co-culture of autologous human renal and immune cells. Previous studies have shown that human renal epithelial cells are able to modulate autologous immune cell responses. However, these studies were undertaken in a standard 2D culture system. The 3D model was developed to re-capitulate these observations within a more physiological relevant in vivo like environment.
Resumo:
Aim Reduced bone mineral density, impaired cardiovascular fitness, and increased risk of obesity are well-known late effects of Hematopoietic Stem Cell Transplantation (HSCT) in survivors of childhood cancer. These comorbidities can be mitigated through physical activity and limiting screen-time (ST). This study aims to increase the understanding of physical activity and ST behaviours for children following HSCT. Method Children were recruited from two oncology follow-up clinics and completed a questionnaire on their physical activity levels and screen-time. Children were classified as short (≤2yrs) and long term (>2yrs) survivors. Results Fifty-eight children were eligible, of whom forty children age 6 to 18 years (60% males) participated in the study. Less than half (47.5%) met the daily recommendations for physical activity and one third met the ST recommendations. Late survivors reported higher daily physical activity and less ST than early survivors. Among late survivors, females reported higher daily physical activity and less ST than males. Conclusions Our findings suggest that the majority of children following HSCT were not sufficiently active and had excessive screen-time; however this was comparable to healthy populations. Appropriately designed physical activity and screen-time intervention programs should be explored early following transplant for children undergoing HSCT.
Resumo:
Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.
Resumo:
This article considers the integral role played by patent law in respect of stem cell research. It highlights concerns about commercialization, access to essential medicines and bioethics. The article maintains that there is a fundamental ambiguity in the Patents Act 1990 (Cth) as to whether stem cell research is patentable subject matter. There is a need to revise the legislation in light of the establishment of the National Stem Cell Centre and the passing of the Research Involving Embryos Act 2002 (Cth). The article raises concerns about the strong patent protection secured by the Wisconsin Alumni Research Foundation and Geron Corporation in respect of stem cell research in the United States. It contends that a number of legal reforms could safeguard access to stem cell lines, and resulting drugs and therapies. Finally, this article explores how ethical concerns are addressed within the framework of the European Biotechnology Directive. It examines the decision of the European Patent Office in relation to the so-called Edinburgh patent, and the inquiry of the European Group on Ethics in Science and New Technologies into The Ethical Aspects of Patenting Involving Human Stem Cells.
Resumo:
This project has identified a molecular signature involved in functions critical to breast cancer progression and metastasis mediated by vitronectin, an abundant protein in human plasma and victornectin:insulin-like growth factor complexes. This may have significant implications in designing future therapeutic targets for patient with tumours overexpressing vitronectin and/or the components of the insulin-like growth factor system:vitronectin axis. In particular, the findings from this project have identified Cyr61 and CTGF as key mediators involved in vitroncetin- and insulin-like growth factor I: Insulin-like growth factor-binding protein:vitronectin-induced breast cancer cell survival and migration.
Resumo:
This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.
Resumo:
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1β (IL-1β) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin α-hemolysin mediated a substantial proportion of CFT073-triggered IL-1β secretion in mouse but not human macrophages. There was also a more substantial α-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely α-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an α-hemolysin-independent IL-1β secretion pathway in human macrophages. This has important implications for understanding UTI in humans.
Resumo:
The first User-Focused Service Engineering, Consumption and Aggregation workshop (USECA) in 2011 was held in conjunction with the WISE 2011 conference in Sydney, Australia. Web services and related technology are a widely accepted standard architectural paradigm for application development. The idea of reusing existing software components to build new applications has been well documented and supported for the world of enterprise computing and professional developers. However, this powerful idea has not been transferred to end-users who have limited or no computing knowledge. The current methodologies, models, languages and tools developed for Web service composition are suited to IT professionals and people with years of training in computing technologies. It is still hard to imagine any of these technologies being used by business professionals, as opposed to computing professionals. © 2013 Springer-Verlag.