943 resultados para COLUMNAR ORGANIZATION
Resumo:
The thesis consists in three papers that investigate two debated topics in industrial organization (in particular in competition policy) through formal models based on game-theory. The first paper deals with potential effects of conglomerate mergers among leading brands in facilitating foreclosure of new suppliers through the retailing channel. The two remaining papers analyze antitrust policy with respect to monopolization of markets of spare parts and aftermarkets by monopolistic equipment manufacturers.
Resumo:
This dissertation comprises three essays on the topic of industrial organization. The first essay considers how different intellectual property systems can affect the incentives to invest in R&D when innovation is cumulative. I introduce a distinction between plain and sophisticated technological knowledge, which plays a crucial role in determining how different appropriability rules affect the incentives to innovate. I argue that the positive effect of weak intellectual property regimes on the sharing of intermediate technological knowledge vanishes when technological knowledge is sophisticated, as is likely to be the case in many high tech industries. The second essay analyzes a two-sided market for news where advertisers may pay a media outlet to conceal negative information on the quality of their own product (paying positive to avoid negative) and/or to disclose negative information on the quality of their competitors products (paying positive to go negative). It is shown that whether advertisers have negative consequences on the accuracy of media reports or not, ultimately depends on the extent of correlation among advertisers products. The third essay considers the role of social learning in the diffusion of a new technology. A population of agents can choose between two risky technologies: an old one for which they know the expected outcome, and a new one for which they have only a prior. Different environments are confronted. In the benchmark case agents are isolated and can perform costly experiments to infer the quality of the new technology. In the other cases agents are settled in a network and can observe the outcomes of neighbors. We observe that in expectations the quality of the new technology may be overestimated when there is a network spread of information.
Resumo:
The goal of this thesis was the investigation of the structure, conformation, supramolecular order and molecular dynamics of different classes of functional materials (phthalocyanine, perylene and hexa-peri-hexabenzocoronene derivatives and mixtures of those), all having planar aromatic cores modified with various types of alkyl chains. The planar aromatic systems are known to stack in the solid and the liquid-crystalline state due to p-p interactions forming columnar superstructures with high one-dimensional charge carrier mobility and potential application in photovoltaic devices. The different functionalities attached to the aromatic cores significantly influence the behavior of these systems allowing the experimentalists to modify the structures to fine-tune the desired thermotropic properties or charge carrier mobility. The aim of the presented studies was to understand the interplay between the driving forces causing self-assembly by relating the structural and dynamic information about the investigated systems. The supramolecular organization is investigated by applying 1H solid state NMR recoupling techniques. The results are related with DSC and X-ray scattering data. Detailed information about the site-specific molecular dynamics is gained by recording spinning sideband patterns using 1H-1H and 13C-1H solid state NMR recoupling techniques. The determined dipole-dipole coupling constants are then related with the coupling constants of the respective rigid pairs, thus providing local dynamic order parameters for the respective moieties. The investigations presented reveal that in the crystalline state the preferred arrangement in the columnar stack of discotic molecules modified with alkyl chains is tilted. This leads to characteristic differences in the 1H chemical shifts of otherwise chemically equivalent protons. Introducing branches and increasing the length of the alkyl chains results in lower mesophase transitions and disordered columnar stacks. In the liquid-crystalline state some of the discs lose the tilted orientation, others do not, but all start a rapid rotation about the columnar axis.
Resumo:
This thesis presents the versatile synthesis and self-organization of C3-symmetric discotic nanographene molecules as well as their potential applications as materials in molecular electronics. The details can be described as follows: 1) A novel synthetic strategy towards properly designed C3 symmetric 1,3,5-tris-2’arylbenzene precursors has been developed. After the final planarization by treatment with FeCl3 under mild conditions, for the first time, it became possible to access a variety of new C3-symmetric hexa-peri-hexabenzocoronenes (HBCs) and a series of triangle-shaped nanographenes. D3 symmetric HBC with three alkyl substituents and C2 symmetric HBC with two alkyl substituents were synthesized and found to show the surprising decrease of isotropic points., the self-assembly at the liquid-solid interface displayed a unique zigzag and flower patterns. 2) Triangle-shaped discotics revealed a unique self-assembly behavior in solution, solid state as well as at the solution-substrate interface. A mesophase stability over the broad temperature range with helical supramoelcular arrangement were observed in the bulk state. The honeycomb pattern as the result of novel self-assembly was presented. Triangle-shaped discotics with swallow alkyl tails were fabricated into photovoltaic devices, the supramolecular arrangement upon thermal treatment was found to play a key role in the improvement of solar efficiency. 3) A novel class of C3 symmetric HBCs with alternating polar/apolar substituents was synthesized. Their peculiar self-assembly in solution, in the bulk and on the surface were investigated by NMR techniques, X-ray diffraction as well as different electron microscope techniques. 4) A novel concept for manipulating the intracolumnar stacking of discotics and thus for controlling the helical pitch was presented. A unique staggered stacking in the column was achieved for the first time. Theoretical simulations confirmed this self-organization and predicted that this packing should show the highest charge carrier mobility for all discotics.
Resumo:
This dissertation comprises four essays on the topic of industrial organization and environmental economics. The first essay investigates the profitability of horizontal mergers of firms with price adjustments. We take a differential game approach and both the open-loop as well as the closed-loop equlibria are considered. In the second essay, using the same approach as the first one, we study the profitability of horizontal merger of firms where the demand function is nonlinear. We take into consideration the open-loop equilibrium. The third essay studies the profitability of exogenous output constraint in a differential game model with price dynamics under the feedback strategies. The fourth essay investigates a second-best trade agreement between two countries when pollution spillovers are asymmetric to examine the strategic behavior of governments in using pollution taxes and tariffs under trade liberalization.
Resumo:
Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.
Resumo:
The alignement and anchoring of liquid crystals on solid surfaces is a key problem for modern device technology that until now has been treated empirically, but that can now be tackled by atomistic computer simulations. Molecular dynamics (MD) simulations were used in this thesis work to study two films of 7 and 8 n-alkyl-4’cyanobiphenyl (7CB and 8CB) liquid crystals , with a thickness of 15 nm, confined between two (001) surfaces of MoS2 (molybdenite). The isotropic and nematic phases of both liquid crystals were simulated, and the resulting structures characterized structurally. A new force field was designed to model the interactions between the liquid crystal (LC) molecules and the surface of molybdenite, while an accurate force field developed previously was used to model the 7CB and 8CB molecules. The results show that the (001) molybdenite surface induces a planar orientation in both the liquid crystals. For the nematic phase of 8CB, one of the two solid/LC interfaces is composed of a first layer of molecules aligned parallel to the surface, followed by a second layer of molecules aligned perpendicular to the surface (also called, homeotropic). The effect of the surface appears to be local in nature as it is confined to the first 15 Angström of the LC film. Conversely, for the nematic phase of 7CB, a planar ordering is established into the LC film. The LC molecules at the interface with the molybdenite appear to align preferentially their alkyl chains toward the solid substrate. The resulting tilt angle of molecules was found to be in good agreement with experimental measurements available in literature. Despite the fact that the MD simulations spanned a time range of more than 100 ns, the nematic phases of both 7CB and 8CB were found not to be completely formed. In order to confirm the findings presented in this thesis, we propose to extend the current study.
Resumo:
The aim of the present work is to contribute to a better understanding of the relation between organization theory and management practice. It is organized as a collection of two papers, a theoretical and conceptual contribution and an ethnographic study. The first paper is concerned with systematizing different literatures inside and outside the field of organization studies that deal with the theory-practice relation. After identifying a series of positions to the theory-practice debate and unfolding some of their implicit assumptions and limitations, a new position called entwinement is developed in order to overcome status quo through reconciliation and integration. Accordingly, the paper proposes to reconceptualize theory and practice as a circular iterative process of action and cognition, science and common-sense enacted in the real world both by organization scholars and practitioners according to purposes at hand. The second paper is the ethnographic study of an encounter between two groups of expert academics and practitioners occasioned by a one-year executive business master in an international business school. The research articulates a process view of the knowledge exchange between management academics and practitioners in particular and between individuals belonging to different communities of practice, in general, and emphasizes its dynamic, relational and transformative mechanisms. Findings show that when they are given the chance to interact, academics and practitioners set up local provisional relations that enable them to act as change intermediaries vis-a-vis each other’s worlds, without tying themselves irremediably to each other and to the scenarios they conjointly projected during the master’s experience. Finally, the study shows that provisional relations were accompanied by a recursive shift in knowledge modes. While interacting, academics passed from theory to practical theorizing, practitioners passed from an involved practical mode to a reflexive and quasi-theoretical one, and then, as exchanges proceeded, the other way around.
Resumo:
Agri-food supply chains extend beyond national boundaries, partially facilitated by a policy environment that encourages more liberal international trade. Rising concentration within the downstream sector has driven a shift towards “buyer-driven” global value chains (GVCs) extending internationally with global sourcing and the emergence of multinational key economic players that compete with increase emphasis on product quality attributes. Agri-food systems are thus increasingly governed by a range of inter-related public and private standards, both of which are becoming a priori mandatory, especially in supply chains for high-value and quality-differentiated agri-food products and tend to strongly affect upstream agricultural practices, firms’ internal organization and strategic behaviour and to shape the food chain organization. Notably, increasing attention has been given to the impact of SPS measures on agri-food trade and notably on developing countries’ export performance. Food and agricultural trade is the vital link in the mutual dependency of the global trade system and developing countries. Hence, developing countries derive a substantial portion of their income from food and agricultural trade. In Morocco, fruit and vegetable (especially fresh) are the primary agricultural export. Because of the labor intensity, this sector (especially citrus and tomato) is particularly important in terms of income and employment generation, especially for the female laborers hired in the farms and packing houses. Hence, the emergence of agricultural and agrifood product safety issues and the subsequent tightening of market requirements have challenged mutual gains due to the lack of technical and financial capacities of most developing countries.
Resumo:
The present work deals with the characterisation of three columnar self-assembled systems, that is, benzene-1,3,5-tricarboxamides, a peripherally thioalkyl-substituted phthalocyanine, and several oligo-(p-phenylenevinylene)s. In order to probe the supramolecular organisation solid-state NMR has been used as the main technique, supported by X-ray measurements, theoretical methods, and thermal analysis. rnrnBenzene-1,3,5-tricarboxamides (BTAs) turned out to be well suited model compounds to study various fundamental supramolecular interactions, such as π-π-interactions, hydrogen bonding, as well as dynamic and steric effects of attached side chains. Six BTAs have been investigated in total, five with a CO-centred amide group bearing different side chains and one with an inverted N-centred amide group. The physical properties of these BTAs have been investigated as a function of temperature. The results indicated that in case of the CO-centred BTAs the stability of the columnar mesophase depends strongly on the nature of the side chains. Further experiments revealed a coplanar orientation of adjacent BTA molecules in the columnar assembly of CO-centred BTAs, whereas the N-centred BTA, showed a deviating not fully coplanar arrangement. These differences were ascribed to distinct hydrogen bonding schemes, involving a parallel alignment of hydrogen bonds in case of CO-centred BTAs and an antiparallel alignment in case of the N-centred counterpart.rnrn The fundamental insights of the supramolecular organisation of BTAs could be partially adapted to an octa-substituted phthalocyanine with thiododecyl moieties. Solid-state NMR in combination with chemical shift calculations determined a tilted herringbone arrangement of phthalocyanine rings in the crystalline phase as well as in the mesophase. Moreover, 1H NMR measurements in the mesophase of this compound suggested an axial rotation of molecules, which is inhibited in the crystalline phase.rnrnAs a third task, the supramolecular assembly of oligo-(p-phenylenevinylene)s of varying length and with different polar head groups have been investigated by a combined X-ray and solid-state NMR study. The results revealed a columnar structure formation of these compounds, being promoted by phase separation of alkyl side chains and aromatic rigid rods. In this system solid-state NMR yielded meaningful insight into the isotropisation process of butoxy and 2-S-methylbutoxy substituted oligo-(p-phenylenevinylene) rods.rn
Resumo:
Chapter 1 studies how consumers’ switching costs affect the pricing and profits of firms competing in two-sided markets such as Apple and Google in the smartphone market. When two-sided markets are dynamic – rather than merely static – I show that switching costs lower the first-period price if network externalities are strong, which is in contrast to what has been found in one-sided markets. By contrast, switching costs soften price competition in the initial period if network externalities are weak and consumers are more patient than the platforms. Moreover, an increase in switching costs on one side decreases the first-period price on the other side. Chapter 2 examines firms’ incentives to invest in local and flexible resources when demand is uncertain and correlated. I find that market power of the monopolist providing flexible resources distorts investment incentives, while competition mitigates them. The extent of improvement depends critically on demand correlation and the cost of capacity: under social optimum and monopoly, if the flexible resource is cheap, the relationship between investment and correlation is positive, and if it is costly, the relationship becomes negative; under duopoly, the relationship is positive. The analysis also sheds light on some policy discussions in markets such as cloud computing. Chapter 3 develops a theory of sequential investments in cybersecurity. The regulator can use safety standards and liability rules to increase security. I show that the joint use of an optimal standard and a full liability rule leads to underinvestment ex ante and overinvestment ex post. Instead, switching to a partial liability rule can correct the inefficiencies. This suggests that to improve security, the regulator should encourage not only firms, but also consumers to invest in security.
Resumo:
The columnar growth habit of apple is interesting from an economic point of view as the pillar-like trees require little space and labor. Genetic engineering could be used to speed up breeding for columnar trees with high fruit quality and disease resistance. For this purpose, this study dealt with the molecular causes of this interesting phenotype. The original bud sport mutation that led to the columnar growth habit was found to be a novel nested insertion of a Gypsy-44 LTR retrotransposon on chromosome 10 at 18.79 Mb. This subsequently causes tissue-specific differential expression of nearby downstream genes, particularly of a gene encoding a 2OG-Fe(II) oxygenase of unknown function (dmr6-like) that is strongly upregulated in developing aerial tissues of columnar trees. The tissue-specificity of the differential expression suggests involvement of cis-regulatory regions and/or tissue-specific epigenetic markers whose influence on gene expression is altered due to the retrotransposon insertion. This eventually leads to changes in genes associated with stress and defense reactions, cell wall and cell membrane metabolism as well as phytohormone biosynthesis and signaling, which act together to cause the typical phenotype characteristics of columnar trees such as short internodes and the absence of long lateral branches. In future, transformation experiments introducing Gypsy-44 into non-columnar varieties or excising Gypsy-44 from columnar varieties would provide proof for our hypotheses. However, since site-specific transformation of a nested retrotransposon is a (too) ambitious objective, silencing of the Gypsy-44 transcripts or the nearby genes would also provide helpful clues.
Resumo:
This article discusses performance in the context of the World Trade Organization (WTO). Applying the framework by Gutner and Thompson and inspired by principal-agent theory, it is argued that existing studies have underspecified the institutional milieu that affects performance. The WTO represents a member-driven organization where Members are part of the international organization (IO) (e.g., through rule-making) and at the same time act outside the IO (e.g., through implementation). Thus, a narrow reading of the IO (focusing on the civil servants and the Director-General and his staff) will not suffice to understand IO performance in the WTO context. Selected evidence is presented to illustrate aspects of the WTO’s inner-working and the institutional milieu of performance. In addition, the article discusses a number of performance parameters, including the relationship between Secretariat autonomy and performance, the role of information, and the mechanisms of performance aggregation. The article ends by cautioning against quick fixes to the system to improve performance.
Resumo:
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.