984 resultados para CO2 GEOLOGICAL STORAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Lit-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose robust and scalable processes for the fabrication of floating gate devices using ordered arrays of 7 nm size gold nanoparticles as charge storage nodes. The proposed strategy can be readily adapted for fabricating next generation (sub-20 nm node) non-volatile memory devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The storage capacity of an activated carbon bed is studied using a 2D transport model with constant inlet flow conditions. The predicted filling times and variation in bed pressure and temperature are in good agreement with experimental observations obtained using a 1.82 L prototype ANG storage cylinder. Storage efficiencies based on the maximum achievable V/V (volume of gas/volume of container) and filling times are used to quantify the performance of the charging process. For the high permeability beds used in the experiments, storage efficiencies are controlled by the rate of heat removal. Filling times, defined as the time at which the bed pressure reaches 3.5 MPa, range from 120 to 3.4 min for inlet flow rates of 1.0 L min(-1) and 30.0 L min(-1), respectively. The corresponding storage efficiencies, eta(s), vary from 90% to 76%, respectively. Simulations with L/D ratios ranging from 0.35 to 7.8 indicate that the storage efficiencies can be improved with an increase in the LID ratios and/or with water cooled convection. Thus for an inlet flow rate of 30.0 L min(-1), an eta(s) value of 90% can be obtained with water cooling for an L/D ratio of 7.8 and a filling time of a few minutes. In the absence of water cooling the eta(s) value reduces to 83% at the same L/D ratio. Our study suggests that with an appropriate choice of cylinder dimensions, solutions based on convective cooling during adsorptive storage are possible with some compromise in the storage capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of a 16 μm laser beam through cascading in a downstream‐mixing CO2 gasdynamic laser is studied. To simulate actual lasing action, a generalized, two‐dimensional, flow‐radiation‐coupled power extraction model for a gasdynamic laser is used. Also, to model the cascade process a new four‐mode CO2‐N2 vibrational kinetic model has been proposed. The steady‐state intensity obtained for an exclusive 9.4 μm transition is of the order of 5×107 W/m2. In the cascade mode of operation the steady‐state intensities for 9.4 and 16 μm transitions of the order of 5×107 W/m2 and 1.0×106 W/m2, respectively, have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for producing simultaneous lasing at 10.6 μm and 38.3 μm in a CO2‐N2‐CS2 gasdynamic laser is presented. The theoretical analysis predicts small‐signal gain values of the order 0.21 m−1 for 10.6 μm lasing in CO2 molecules and 0.085 m−1 for 38.3 μm lasing in CS2 molecules, indicating the possibility of dual wave lasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several ways of storing electrical energy in chemical and physical forms and retrieving it on demand, and ultracapacitors are one among them. This article presents the taxonomy of ultracapacitor and describes various types of rechargeable-battery electrodes that can be used to realize the hybrid ultracapacitors in conjunction with a high-surface-area-graphitic-carbon electrode. While the electrical energy is stored in a battery electrode in chemical form, it is stored in physical form as charge in the electrical double-layer formed between the electrolyte and the high-surface-area-carbon electrodes. This article discusses various types of hybrid ultracapacitors along with the possible applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In todays era of energy crisis and global warming, hydrogen has been projected as a sustainable alternative to depleting CO2-emitting fossil fuels. However, its deployment as an energy source is impeded by many issues, one of the most important being storage. Chemical hydrogen storage materials, in particular B?N compounds such as ammonia borane, with a potential storage capacity of 19.6 wt?% H2 and 0.145 kg?H?2?L-1, have been intensively studied from the standpoint of addressing the storage issues. Ammonia borane undergoes dehydrogenation through hydrolysis at room temperature in the presence of a catalyst, but its practical implementation is hindered by several problems affecting all of the chemical compounds in the reaction scheme, including ammonia borane, water, borate byproducts, and hydrogen. In this Minireview, we exhaustively survey the state of the art, discuss the fundamental problems, and, where applicable, propose solutions with the prospect of technological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the activity of ionic substituted bimetallic Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts for low-temperature water gas shift (WGS) reaction. The catalysts were synthesized in nano-crystalline size by a sonochemical method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. Due to the ionic substitution of these aliovalent base metals, lattice oxygen in CeO2 is activated and these catalysts show high activity for WGS at low temperature. An increase in the reducibility and oxygen storage capacity of bimetallic substituted CeO2, as evidenced by H-2-TPR experiments, is the primary reason for the higher activity towards WGS reaction. In the absence of feed CO2 and H-2, 100% conversion of CO with 100% H-2 selectivity was observed at 320 degrees C and 380 degrees C, for Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts. Notably, in the presence of feed H2O. a reverse WGS reaction does not occur over these ceria modified catalysts. A redox reaction mechanism, involving oxidation of CO adsorbed on the metal was developed to correlate the experimental data and determine kinetic parameters. (C) 2012 Elsevier B.V. All rights reserved.