995 resultados para BCG, PCR, immunothérapie, RNA
Resumo:
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.
Resumo:
In principle, we should be glad that Eric Kmiec and his colleagues published in Science's STKE (1) a detailed experimental protocol of their gene repair method (2, 3). However, a careful reading of their contribution raises more doubts about the method. The research published in Science five years ago by Kmiec and his colleagues was said to demonstrate that chimeric RNA-DNA oligonucleotides could correct the mutation responsible for sickle cell anemia with 50% efficiency (4). Such a remarkable result prompted many laboratories to attempt to replicate the research or utilize the method on their own systems. However, if the method worked at all, which it rarely did, the achieved efficiency was usually lower by several orders of magnitude. Now, in the Science's STKE protocol, we are given crucial information about the method and why it is so important to utilize these expensive chimeric RNA-DNA constructs. In the introduction we are told that the RNA-DNA duplex is more stable than a DNA-DNA duplex and so extends the half-life of the complexes formed between the targeted DNA and the chimeric RNA-DNA oligonucleotides. This logical explanation, however, conflicts with the statement in the section entitled "Transfection with Oligonucleotides and Plasmid DNA" that Kmiec and colleagues have recently demonstrated that classical single-stranded DNA oligonucleotides with a few protective phosphothioate linkages have a "gene repair conversion frequency rivaling that of the RNA/DNA chimera". Indeed, the research cited for that result actually states that single-stranded DNA oligonucleotides are in fact several-fold more efficient (3.7-fold) than the RNA-DNA chimeric constructs (5). If that is the case, it raises the question of why Kmiec and colleagues emphasize the importance of the RNA in their original chimeric constructs. Their own new results show that modified single-stranded DNA oligonucleotides are more effective than the expensive RNA-DNA hybrids. Moreover, the current efficiency of the gene repair by RNA-DNA hybrids, according to Kmiec and colleagues in their recent paper is only 4×10-4 even after several hours of pre-selection permitting multiplification of bacterial cells with the corrected plasmid (5). This efficiency is much lower than the 50% value reported five years ago, but is assuredly much closer to the reality.
Resumo:
Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIP(L), a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIP(L) expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIP(L) protein and fully reversed FLIP(L)-mediated TRAIL resistance. Moreover, interference with endogenous FLIP(L) and FLIP(S) significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) for the detection of respiratory syncytial virus (RSV) genomes. The primers were designed from published sequences and selected from conserved regions of the genome encoding for the N protein of subgroups A and B of RSV. PCR was applied to 20 specimens from children admitted to the respiratory ward of "William Soler" Pediatric Hospital in Havana City with a clinical diagnosis of bronchiolitis. The PCR was compared with viral isolation and with an indirect immunofluorescence technique that employs monoclonal antibodies of subgroups A and B. Of 20 nasopharyngeal exudates, 10 were found positive by the three assayed methods. In only two cases, samples that yielded positive RNA-PCR were found negative by indirect immunofluorescence and cell culture. Considering viral isolation as the "gold standard" technique, RNA-PCR had 100% sensitivity and 80% specificity. RNA-PCR is a specific and sensitive technique for the detection of the RSV genome. Technical advantages are discussed
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
BACKGROUND: In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. RESULTS: Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. CONCLUSIONS: We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.
Resumo:
Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a) the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT) medium at 28oC is 58±13 hr; (b) differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c) trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d) blood forms are highly infective to mice; (e) blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a) isoenzymatic profiles are characteristic of zymodeme ZB; (b) PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c) schizodeme, randomly amplified polymorphic DNA (RAPD) and DNA fingerprinting analyses were performed
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
In this study, HIV-1 viral load quantitation determined by Nucleic Acid Sequence Based Amplification (NASBA) was compared with other surrogate disease progression markers (antigen p24, CD4/CD8 cell counts and b-2 microglobulin) in 540 patients followed up at São Paulo, SP, Brazil. HIV-1 RNA detection was statistically associated with the presence of antigen p24, but the viral RNA was also detected in 68% of the antigen p24 negative samples, confirming that NASBA is much more sensitive than the determination of antigen p24. Regarding other surrogate markers, no statistically significant association with the detection of viral RNA was found. The reproducibility of this viral load assay was assessed by 14 runs of the same sample, using different reagents batches. Viral load values in this sample ranged from 5.83 to 6.27 log (CV = 36 %), less than the range (0.5 log) established to the determination of significant viral load changes.
Resumo:
BACKGROUND: Enterovirus (EV) is the most frequent cause of aseptic meningitis (AM). Lack of microbiological documentation results in unnecessary antimicrobial therapy and hospitalization. OBJECTIVES: To assess the impact of rapid EV detection in cerebrospinal fluid (CSF) by a fully-automated PCR (GeneXpert EV assay, GXEA) on the management of AM. STUDY DESIGN: Observational study in adult patients with AM. Three groups were analyzed according to EV documentation in CSF: group A=no PCR or negative PCR (n=17), group B=positive real-time PCR (n=20), and group C=positive GXEA (n=22). Clinical, laboratory and health-care costs data were compared. RESULTS: Clinical characteristics were similar in the 3 groups. Median turn-around time of EV PCR decreased from 60h (IQR (interquartile range) 44-87) in group B to 5h (IQR 4-11) in group C (p<0.0001). Median duration of antibiotics was 1 (IQR 0-6), 1 (0-1.9), and 0.5 days (single dose) in groups A, B, and C, respectively (p<0.001). Median length of hospitalization was 4 days (2.5-7.5), 2 (1-3.7), and 0.5 (0.3-0.7), respectively (p<0.001). Median hospitalization costs were $5458 (2676-6274) in group A, $2796 (2062-5726) in group B, and $921 (765-1230) in group C (p<0.0001). CONCLUSIONS: Rapid EV detection in CSF by a fully-automated PCR improves management of AM by significantly reducing antibiotic use, hospitalization length and costs.