893 resultados para Apoptosis . Autophagy . Diabetic retinopathy .
Resumo:
I discovered that 2,5OAS family of proteins was transcriptionally upregulated by BRCA1 and interferon gamma in a synergistic manner. This correlated with synergistically induced apoptosis and both the induction of 2,5OAS and the accompanying apoptosis could be inhibited by 2,5OAS specific siRNA proving 2,5OAS was the apoptotic effector.
Resumo:
Dysfunction of the actin cytoskeleton is a key event in the pathogenesis of diabetic nephropathy. We previously reported that certain cytoskeletal genes are upregulated in mesangial cells exposed to a high extracellular glucose concentration. One such gene, caldesmon, lies on chromosome 7q35, a region linked to nephropathy in family studies, making it a candidate susceptibility gene for diabetic nephropathy. We screened all exons, untranslated regions, and a 5-kb region upstream of the gene for variation using denaturing high-performance liquid chromatography technology. An A>G single nucleotide polymorphism (SNP) at position -579 in the promoter region was associated with nephropathy in a case-control study using 393 type 1 diabetic patients from Northern Ireland (odds ratio [OR] 1.38, 95% CI 1.02–1.86, P = 0.03). A similar trend was found in an independent sample from a second center. When the sample groups were combined (n = 606), the association between the -579G allele and nephropathy remained significant (OR 1.35, 1.07–1.70, P = 0.01). The haplotype structure in the surrounding 7-kb region was determined. No single haplotype was more strongly associated with nephropathy than the -579A>G SNP. These results suggest a role for the caldesmon gene in susceptibility to diabetic nephropathy in type 1 diabetes.
Resumo:
Fas (CD95/Apo-1) is a member of the tumor necrosis factor receptor family. Receptor binding results in activation of caspase 8, leading to activation of proapoptotic downstream molecules. We found that expression of Fas was up-regulated >10-fold in MCF-7 breast and HCT116 and RKO colon cancer cell lines after treatment with IC(60) doses of 5-fluorouracil (5-FU) and raltitrexed (RTX). Combined treatment with the agonistic Fas antibody CH-11 and either 5-FU or RTX resulted in a highly synergistic induction of apoptosis in these cell lines. Similar results were obtained for another antifolate, Alimta. Induction of thymidylate synthase expression inhibited Fas induction in response to RTX and Alimta, but not in response to 5-FU. Furthermore, thymidylate synthase induction abrogated the synergy between CH-11 and both antifolates but had no effect on the synergistic interaction between 5-FU and CH-11. Inactivation of p53 in MCF-7 and HCT116 cell lines blocked 5-FU- and antifolate-mediated up-regulation of Fas. Furthermore, Fas was not up-regulated in response to 5-FU or antifolates in the p53-mutant H630 colon cancer cell line. Lack of Fas up-regulation in the p53-null and -mutant lines abolished the synergistic interaction between 5-FU and CH-11. Interestingly, synergy was still observed between the antifolates and CH-11 in the p53-null HCT116 and p53-mutant H630 cell lines, although this was significantly reduced compared with the p53 wild-type cell lines. Our results indicate that Fas is an important mediator of apoptosis in response to both 5-FU and antifolates.
Resumo:
We investigated the role of p53 and the signal transducer and activator of transcription 1 (STAT1) in regulating Fas-mediated apoptosis in response to chemotherapies used to treat colorectal cancer. We found that 5-fluorouracil (5-FU) and oxaliplatin only sensitized p53 wild-type (WT) colorectal cancer cell lines to Fas-mediated apoptosis. In contrast, irinotecan (CPT-11) and tomudex sensitized p53 WT, mutant, and null cells to Fas-mediated cell death. Furthermore, CPT-11 and tomudex, but not 5-FU or oxaliplatin, up-regulated Fas cell surface expression in a p53-independent manner. In addition, increased Fas cell surface expression in p53 mutant and null cell lines in response to CPT-11 and tomudex was accompanied by only a slight increase in total Fas mRNA and protein expression, suggesting that these agents trigger p53-independent trafficking of Fas to the plasma membrane. Treatment with CPT-11 or tomudex induced STAT1 phosphorylation (Ser727) in the p53-null HCT116 cell line but not the p53 WT cell line. Furthermore, STAT1-targeted small interfering RNA (siRNA) inhibited up-regulation of Fas cell surface expression in response to CPT-11 and tomudex in these cells. However, we found no evidence of altered Fas gene expression following siRNA-mediated down-regulation of STAT1 in drug-treated cells. This suggests that STAT1 regulates expression of gene(s) involved in cell surface trafficking of Fas in response to CPT-11 or tomudex. We conclude that CPT-11 and tomudex may be more effective than 5-FU and oxaliplatin in the treatment of p53 mutant colorectal cancer tumors by sensitizing them to Fas-mediated apoptosis in a STAT1-dependent manner.