952 resultados para Aluminum -- Congresses
Resumo:
Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.
Resumo:
The microstructure of 6XXX aluminum alloys deeply affects mechanical, crash, corrosion and aesthetic properties of extruded profiles. Unfortunately, grain structure evolution during manufacturing processes is a complex phenomenon because several process and material parameters such as alloy chemical composition, temperature, extrusion speed, tools geometries, quenching and thermal treatment parameters affect the grain evolution during the manufacturing process. The aim of the present PhD thesis was the analysis of the recrystallization kinetics during the hot extrusion of 6XXX aluminum alloys and the development of reliable recrystallization models to be used in FEM codes for the microstructure prediction at a die design stage. Experimental activities have been carried out in order to acquire data for the recrystallization models development, validation and also to investigate the effect of process parameters and die design on the microstructure of the final component. The experimental campaign reported in this thesis involved the extrusion of AA6063, AA6060 and AA6082 profiles with different process parameters in order to provide a reliable amount of data for the models validation. A particular focus was made to investigate the PCG defect evolution during the extrusion of medium-strength alloys such as AA6082. Several die designs and process conditions were analysed in order to understand the influence of each of them on the recrystallization behaviour of the investigated alloy. From the numerical point of view, innovative models for the microstructure prediction were developed and validated over the extrusion of industrial-scale profiles with complex geometries, showing a good matching in terms of the grain size and surface recrystallization prediction. The achieved results suggest the reliability of the developed models and their application in the industrial field for process and material properties optimization at a die-design stage.
Resumo:
In food and beverage industry, packaging plays a crucial role in protecting food and beverages and maintaining their organoleptic properties. Their disposal, unfortunately, is still difficult, mainly because there is a lack of economically viable systems for separating composite and multilayer materials. It is therefore necessary not only to increase research in this area, but also to set up pilot plants and implement these technologies on an industrial scale. LCA (Life Cycle Assessment) can fulfil these purposes. It allows an assessment of the potential environmental impacts associated with a product, service or process. The objective of this thesis work is to analyze the environmental performance of six separation methods, designed for separating the polymeric from the aluminum fraction in multilayered packaging. The first four methods utilize the chemical dissolution technique using Biodiesel, Cyclohexane, 2-Methyltetrahydrofuran (2-MeTHF) and Cyclopentyl-methyl-ether (CPME) as solvents. The last two applied the mechanical delamination technique with surfactant-activated water, using Ammonium laurate and Triethanolamine laurate as surfactants, respectively. For all six methods, the LCA methodology was applied and the corresponding models were built with the GaBi software version 10.6.2.9, specifically for LCA analyses. Unfortunately, due to a lack of data, it was not possible to obtain the results of the dissolution methods with the solvents 2-MeTHF and CPME; for the other methods, however, the individual environmental performances were calculated. Results revealed that the methods with the best environmental performance are method 2, for dissolution methods, and method 5, for delamination methods. This result is confirmed both by the analysis of normalized and weighted results and by the analysis of 'original' results. An hotspots analysis was also conducted.
Resumo:
The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.
Resumo:
To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.
Resumo:
A new white pigment made out of nano-structured non-crystalline aluminum phosphate was recently launched as an industrial product. Pigment opacifying properties are not intrinsic to aluminum phosphate but they arise as the result of a rare hollow particle nano-structure. This is in turn derived from the core-and-shell structure of amorphous aluminum phosphate precipitated under well-defined conditions. The new pigment is a product of the often neglected chemistry of non-crystalline ionic solids that can probably be a rich source of new successful products. The text describes a short account of the R&D activities, from the initial ideas to the present.
Resumo:
Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.
Resumo:
The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340ºC. The castings were divested manually and airborne-particle abraded with 100-µm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (α=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Resumo:
OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05). RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.