969 resultados para Algebraic renormalization
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
We show that if A is an abelian category satisfying certain mild conditions, then one can introduce the concept of a moduli space of (semi)stable objects which has the structure of a projective algebraic variety. This idea is applied to several important abelian categories in representation theory, like highest weight categories.
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
Resumo:
Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).
Resumo:
Special groups are an axiomatization of the algebraic theory of quadratic forms over fields. It is known that any finite reduced special group is the special group of some field. We show that any special group that is the projective limit of a projective system of finite reduced special groups is also the special group of some field.
Resumo:
Comfort and Remus [W.W. Comfort, D. Remus, Abelian torsion groups with a pseudo-compact group topology, Forum Math. 6 (3) (1994) 323-337] characterized algebraically the Abelian torsion groups that admit a pseudocompact group topology using the Ulm-Kaplansky invariants. We show, under a condition weaker than the Generalized Continuum Hypothesis, that an Abelian torsion group (of any cardinality) admits a pseudocompact group topology if and only if it admits a countably compact group topology. Dikranjan and Tkachenko [D. Dikranjan. M. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (6) (2003) 811-837], and Dikranjan and Shakhmatov [D. Dikranjan. D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (1-3) (2005) 2-54] showed this equivalence for groups of cardinality not greater than 2(c). We also show, from the existence of a selective ultrafilter, that there are countably compact groups without non-trivial convergent sequences of cardinality kappa(omega), for any infinite cardinal kappa. In particular, it is consistent that for every cardinal kappa there are countably compact groups without non-trivial convergent sequences whose weight lambda has countable cofinality and lambda > kappa. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We extend the renormalization operator introduced in [A. de Carvalho, M. Martens and M. Lyubich. Renormalization in the Henon family, I: universality but non-rigidity. J. Stat. Phys. 121(5/6) (2005), 611-669] from period-doubling Henon-like maps to Henon-like maps with arbitrary stationary combinatorics. We show that the renonnalization picture also holds in this case if the maps are taken to be strongly dissipative. We study infinitely renormalizable maps F and show that they have an invariant Cantor set O on which F acts like a p-adic adding machine for some p > 1. We then show, as for the period-doubling case in the work of de Carvalho, Martens and Lyubich [Renormalization in the Henon family, I: universality but non-rigidity. J. Stat. Phys. 121(5/6) (2005), 611-669], that the sequence of renormalizations has a universal form, but that the invariant Cantor set O is non-rigid. We also show that O cannot possess a continuous invariant line field.
Resumo:
The aim of this thesis is to look for signs of students’ understanding of algebra by studying how they make the transition from arithmetic to algebra. Students in an Upper Secondary class on the Natural Science program and Science and Technology program were given a questionnaire with a number of algebraic problems of different levels of difficulty. Especially important for the study was that students leave comments and explanations of how they solved the problems. According to earlier research, transitions are the most critical steps in problem solving. The Algebraic Cycle is a theoretical tool that can be used to make different phases in problem solving visible. To formulate and communicate how the solution was made may lead to students becoming more aware of their thought processes. This may contribute to students gaining more understanding of the different phases involved in mathematical problem solving, and to students becoming more successful in mathematics in general.The study showed that the students could solve mathematical problems correctly, but that they in just over 50% of the cases, did not give any explanations to their solutions.
Resumo:
We present a method using an extended logical system for obtaining programs from specifications written in a sublanguage of CASL. These programs are “correct” in the sense that they satisfy their specifications. The technique we use is to extract programs from proofs in formal logic by techniques due to Curry and Howard. The logical calculus, however, is novel because it adds structural rules corresponding to the standard ways of modifying specifications: translating (renaming), taking unions, and hiding signatures. Although programs extracted by the Curry-Howard process can be very cumbersome, we use a number of simplifications that ensure that the programs extracted are in a language close to a standard high-level programming language. We use this to produce an executable refinement of a given specification and we then provide a method for producing a program module that maximally respects the original structure of the specification. Throughout the paper we demonstrate the technique with a simple example.
Resumo:
We suggest the use of a particular Divisia index for measuring welfare losses due to interest rate wedges and in‡ation. Compared to the existing options in the literature: i) when the demands for the monetary assets are known, closed-form solutions for the welfare measures can be obtained at a relatively lower algebraic cost; ii) less demanding integrability conditions allow for the recovery of welfare measures from a larger class of demand systems and; iii) when the demand speci…cations are not known, using an index number entitles the researcher to rank di¤erent vectors of opportunity costs directly from market observations. We use two examples to illustrate the method.
Resumo:
Trabalho apresentado Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-14), Halle, 7-11 Sep 2015
Resumo:
We give a thorough account of the various equivalent notions for \sheaf" on a locale, namely the separated and complete presheaves, the local home- omorphisms, and the local sets, and to provide a new approach based on quantale modules whereby we see that sheaves can be identi¯ed with certain Hilbert modules in the sense of Paseka. This formulation provides us with an interesting category that has immediate meaningful relations to those of sheaves, local homeomorphisms and local sets. The concept of B-set (local set over the locale B) present in [3] is seen as a simetric idempotent matrix with entries on B, and a map of B-sets as de¯ned in [8] is shown to be also a matrix satisfying some conditions. This gives us useful tools that permit the algebraic manipulation of B-sets. The main result is to show that the existing notions of \sheaf" on a locale B are also equivalent to a new concept what we call a Hilbert module with an Hilbert base. These modules are the projective modules since they are the image of a free module by a idempotent automorphism On the ¯rst chapter, we recall some well known results about partially ordered sets and lattices. On chapter two we introduce the category of Sup-lattices, and the cate- gory of locales, Loc. We describe the adjunction between this category and the category Top of topological spaces whose restriction to spacial locales give us a duality between this category and the category of sober spaces. We ¯nish this chapter with the de¯nitions of module over a quantale and Hilbert Module. Chapter three concerns with various equivalent notions namely: sheaves of sets, local homeomorphisms and local sets (projection matrices with entries on a locale). We ¯nish giving a direct algebraic proof that each local set is isomorphic to a complete local set, whose rows correspond to the singletons. On chapter four we de¯ne B-locale, study open maps and local homeo- morphims. The main new result is on the ¯fth chapter where we de¯ne the Hilbert modules and Hilbert modules with an Hilbert and show this latter concept is equivalent to the previous notions of sheaf over a locale.