990 resultados para Active silica
Resumo:
Description of a simple method for counting bacteria with active electron transport systems in water and sediment samples. Sodium succinate, NADH and NADPH served as electron donors. It is possible to see several sites of electron transport in the larger cells. Especially impressive are the plankton-algae, protozoa, and small metazoa. This is a partial translation of the ”method” section only.
Resumo:
Ordered granular systems have been a subject of active research for decades. Due to their rich dynamic response and nonlinearity, ordered granular systems have been suggested for several applications, such as solitary wave focusing, acoustic signals manipulation, and vibration absorption. Most of the fundamental research performed on ordered granular systems has focused on macro-scale examples. However, most engineering applications require these systems to operate at much smaller scales. Very little is known about the response of micro-scale granular systems, primarily because of the difficulties in realizing reliable and quantitative experiments, which originate from the discrete nature of granular materials and their highly nonlinear inter-particle contact forces.
In this work, we investigate the physics of ordered micro-granular systems by designing an innovative experimental platform that allows us to assemble, excite, and characterize ordered micro-granular systems. This new experimental platform employs a laser system to deliver impulses with controlled momentum and incorporates non-contact measurement apparatuses to detect the particles’ displacement and velocity. We demonstrated the capability of the laser system to excite systems of dry (stainless steel particles of radius 150 micrometers) and wet (silica particles of radius 3.69 micrometers, immersed in fluid) micro-particles, after which we analyzed the stress propagation through these systems.
We derived the equations of motion governing the dynamic response of dry and wet particles on a substrate, which we then validated in experiments. We then measured the losses in these systems and characterized the collision and friction between two micro-particles. We studied wave propagation in one-dimensional dry chains of micro-particles as well as in two-dimensional colloidal systems immersed in fluid. We investigated the influence of defects to wave propagation in the one-dimensional systems. Finally, we characterized the wave-attenuation and its relation to the viscosity of the surrounding fluid and performed computer simulations to establish a model that captures the observed response.
The findings of the study offer the first systematic experimental and numerical analysis of wave propagation through ordered systems of micro-particles. The experimental system designed in this work provides the necessary tools for further fundamental studies of wave propagation in both granular and colloidal systems.
Resumo:
Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well. (c) 2005 Optical Society of America.
Resumo:
We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.
Resumo:
Inductively coupled plasma (ICP) technology is a new advanced version of dry-etching technology compared with the widely used method of reactive ion etching (RIE). Plasma processing of the ICP technology is complicated due to the mixed reactions among discharge physics, chemistry and surface chemistry. Extensive experiments have been done and microoptical elements have been fabricated successfully, which proved that the ICP technology is very effective in dry etching of microoptical elements. In this paper, we present the detailed fabrication of microoptical fused silica phase gratings with ICP technology. Optimized condition has been found to control the etching process of ICP technology and to improve the etching quality of microoptical elements greatly. With the optimized condition, we have fabricated lots of good gratings with different periods, depths, and duty cycles. The fabricated gratings are very useful in fields such as spectrometer, high-efficient filter in wavelength-division-multiplexing system, etc..
Resumo:
This dissertation describes studies on two multinucleating ligand architectures: the first scaffold was designed to support tricopper complexes, while the second platform was developed to support tri- and tetrametallic clusters.
In Chapter 2, the synthesis of yttrium (and lanthanide) complexes supported by a tripodal ligand framework designed to bind three copper centers in close proximity is described. Tricopper complexes were shown to react with dioxygen in a 1:1 [Cu3]/O2 stoichiometry to form intermediates in which the O–O bond was fully cleaved, as characterized via UV-Vis spectroscopy and determination of the reaction stoichiometry. Pre-arrangement of the three Cu centers was pivotal to cooperative O2 activation, as mono-copper complexes reacted differently with dioxgyen. The reactivity of the observed intermediates was studied with various substrates (reductants, O-atom acceptors, H-atom donors, Brønsted acids) to determine their properties. In Chapter 3, the reactivity of the same yttrium-tricopper complex with nitric oxide was explored. Reductive coupling to form a trans-hyponitrite complex (characterized by X-ray crystallography) was observed via cooperative reactivity by an yttrium and a copper center on two distinct tetrametallic units. The hyponitrite complex was observed to release nitrous oxide upon treatment with a Brønsted acid, supporting its viability as an intermediate in nitric oxide reduction to nitrous oxide.
In Chapter 4, a different multinucleating ligand scaffold was employed to synthesize heterometallic triiron clusters containing one oxide and one hydroxide bridges. The effects of the redox-inactive, Lewis acidic heterometals on redox potential was studied by cyclic voltammetry, unveiling a linear correlation between redox potential and heterometal Lewis acidity. Further studies on these complexes showed that the Lewis acidity of the redox-inactive metals also affected the oxygen-atom transfer reactivity of these clusters. Comparisons of this reactivity with manganese systems, collaborative efforts to reassign the structures of related manganese oxo-hydroxo clusters, and synthetic attempts to access related dioxo clusters are also described.
In Appendix A, ongoing efforts to synthesize new clusters supported by the same multinucleating ligand platform are described. Studies of novel approaches towards ligand exchange in tetrametallic clusters and incorporation of new supporting and bridging ligand motifs in trinuclear complexes are presented.
Resumo:
A Echinodorus macrophyllus (Alismataceae), conhecida como chapéu de couro no Brasil, é usada popularmente para tratar doenças reumáticas e inflamatórias. Neste trabalho, foram avaliados os efeitos antiinflamatórios do extrato aquoso de E. macrophyllus (EAEm) e suas frações etanólicas no modelo murino de air pouch. Para a obtenção das frações, 7 g do EAEm foram aplicadas em uma coluna cromatográfica aberta de sílica gel eluída com diferentes concentrações de etanol. Os cromatogramas do EAEm/frações foram obtidos usando um sistema de HPLC. Foram obtidas quatro frações, duas delas com maior rendimento. Resumidamente, a bolha de ar foi induzida pela injeção de 5 mL de ar estéril (s.c) no dorso de camundongos SW machos (25-35 g). Após 3 dias, mas 3 mL de ar estéril foram injetados para manter a bolha. No sexto dia, cada grupo (n = 4) foi tratado intraperitoneal (ip) ou oralmente (v.o) com EAEm (25 ou 250 mg/kg), Fr20 ou Fr40 (2,5, 25, 50 ou 100 mg/kg) e os controles com indometacina (10 mg/kg, v.o.) ou veículo (salina). Uma hora depois, 1 mL de salina ou de carragenina 1% estéril foi injetada dentro da bolha. Após 4 h, a cavidade foi lavada com NaCl 0,9%, EDTA 2 mM (1 mL), para a determinação do número de leucócitos, volume do exsudato e concentração de proteínas. Células do exsudato foram preparadas em citocentrífuga e coradas pelo método do Panótico para a contagem diferencial dos leucócitos. Cortes histológicos coletados dos diferentes grupos foram fixados com formol tamponado 10% (pH 7,4) por 7 dias, corados com HE e analisados em MO. A análise da expressão da iNOS e da COX-2 foi realizada em células do exsudato por RT-PCR. O acúmulo de nitrito (NO2−) no sobrenadante do cultivo de células RAW 264.7 foi determinado usando um ensaio colorimétrico baseado na reação de Griess. Os resultados foram expressos como média EP e comparados usando ANOVA seguido de teste de Dunnet. Os experimentos foram realizados em triplicata. No modelo air pouch, a injeção de carragenina 1% aumentou tanto a migração celular quanto a concentração de proteína no exsudato. Contudo, enquanto o pré-tratamento com a Fr40 aumentou a resposta inflamatória, o pré-tratamento com o EAEm e a Fr20, sobretudo por via i.p., inibiu esta resposta quando comparado ao grupo controle tratado apenas com o veículo. Assim, foram observadas as seguintes razões de inibição da migração de células: EAEm, i.p. a 25 mg/kg (66,44%) e a 250 mg/kg (87,27%) e Fr20 a 2,5 mg/kg (26,89%), 25 mg/kg (60,06%), 50 mg/kg (63,13%) e a 100 mg/kg (77,47%). Em relação à contagem diferencial, o EAEm e a Fr20 afetaram principalmente o número de neutrófilos, inibindo sua migração no exsudato. O EAEm e a Fr20 também reduziram a concentração total de proteínas no exsudato principalmente no tratamento i.p.; EAEm a 25 e 250 mg/kg mostrou 3,33 0,55 e 2,05 0,51 mg/mL, respectivamente, quando comparado aos grupos controles (Indometacina 2.88 0.64 mg/mL; Veículo 5.48 0.88 mg/mL). A Fr20 a 2,5, 25, 50 e 100 mg/kg mostrou 4,788 0,444, 1,417 0,519, 2,474 0,529 e 2,215 0, 361 mg/mL. A análise histológica mostrou infiltrado celular, principalmente composto de leucócitos polimorfonucleares ao longo da derme inflamada de animais tratados com veículo. O tratamento com o EAEm ou Fr20 reduziu a infiltração de leucócitos no tecido inflamado. Além disso, o tratamento com o EAEm e a Fr20 mostrou atividade supressora sobre a expressão de iNOS e COX-2, e mostrou efeitos inibitórios na produção de NO induzida por LPS. Concluindo, todos estes resultados confirmam o potencial antiinflamatório sugerido para esta planta e fornecem uma base para a compreensão de seus mecanismos moleculares de ação. Contudo, outros estudos devem ser realizados para melhor elucidar as vias pelas quais o EAEm e a Fr20 exercem seus efeitos antiinflamatórios. Além disso, estudos fitoquímicos devem ser realizados para identificar os compostos ativos no EAEm e na Fr20.
Resumo:
We describe the design, fabrication, and excellent performance of an optimized deep-etched high-density fused-silica transmission grating for use in dense wavelength division multiplexing (DWDM) systems. The fabricated optimized transmission grating exhibits an efficiency of 87.1% at a wavelength of 1550 nm. Inductively coupled plasma-etching technology was used to fabricate the grating. The deep-etched high-density fused-silica transmission grating is suitable for use in a DWDM system because of its high efficiency, low polarization-dependent loss, parallel demultiplexing, and stable optical performance. The fabricated deep-etched high-density fused-silica transmission gratings should play an important role in DWDM systems. (c) 2006 Optical Society of America.
Resumo:
We describe high-efficiency diffraction gratings fabricated in fused silica at the wavelength of 632.8 nm by rigorous coupled-wave analysis (RCWA). High-density holographic gratings, if the groove density falls within the range of 1575-1630 lines/mm and the groove depth within the range of 1.1-1.3 microns, can realize high diffraction efficiencies at the wavelength of 632.8 nm, e.g., the first Bragg diffraction efficiency can theoretically achieve more than 93% both in TE- and TM-polarized incidences, which greatly reduces the polarization-dependent losses. Note that with different groove profiles further optimized, the maximum efficiency of more than 99.69% can be achieved for TM-polarized incidence, or 97.81% for TE-polarized incidence.
Resumo:
We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America