974 resultados para Accumulation of snow
Resumo:
The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
Resumo:
Introduction: Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods: An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results: Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion: Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. © 2013 Barr et al.
Resumo:
This research explores the relationship between international business Internet capabilities and international entrepreneurial characteristics. It has been suggested, that the accumulation of a firms Internet capability can assist international operations, especially when operating in fast changing dynamic environments. However, the international entrepreneurial characteristics which are seen as a precursor to leveraging such capabilities are still vague. Given this finding a conceptual framework is constructed and research issues are then developed in order to focus attention on the relationship between the Internet and a firm’s resource base, dynamic capabilities and international market performance.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
It is commonly assumed that rates of accumulation of organic-rich strata have varied through geologic time with some periods that were particularly favorable for accumulation of petroleum source rocks or coals. A rigorous analysis of the validity of such an assumption requires consideration of the basic fact that although sedimentary rocks have been lost through geologic time to erosion and metamorphism. Consequently, their present-day global abundance decreases with their geologic age. Measurements of the global abundance of coal-bearing strata suggest that conditions for coal accumulation were exceptionally favorable during the late Carboniferous. Strata of this age constitute 21% of the world's coal-bearing strata. Global rates of coal accumulation appear to have been relatively constant since the end of the Carboniferous, with the exception of the Triassic which contains only 1.75% of the world's coal-bearing strata. Estimation of the global amount of discovered oil by age of the source rock show that 58% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. Although most geologic periods were favourable for oil source-rock accumulation the mid-Permian to mid-Jurassic appears to have been particularly unfavourable accounting for less than 2% of the world's oil. Estimation of the global amount of discovered natural gas by age of the source rock show that 48% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. The Silurian and Late Carboniferous were particularly favourable for gas source-rock accumulation respectively accounting for 12.9% and 6.9% of the world's gas. By contrast, Permian and Triassic source rocks account for only 1.7% of the world's natural gas. Rather than invoking global climatic or oceanic events to explain the relative abundance of organic rich sediments through time, examination of the data suggests the more critical control is tectonic. The majority of coals are associated with foreland basins and the majority of oil-prone source rocks are associated with rifting. The relative abundance of these types of basin through time determines the abundance and location of coals and petroleum source rocks.
Resumo:
A longitudinal study of grieving in family caregivers of people with dementia Recent research into dementia has identified the long term impact that the role of care giving for a relative with dementia has on family members This is largely due to the cognitive decline that characterises dementia and the losses that can be directly attributed to this. These losses include loss of memories, relationships and intimacy, and are often ambiguous so that the grief that accompanies them is commonly not recognised or acknowledged. The role and impact of pre-death or anticipatory grief has not previously been widely considered as a factor influencing health and well-being of family caregivers. Studies of grief in caregivers of a relative with dementia have concluded that grief is one of the greatest barriers to care giving and is a primary determinant of caregiver well-being. The accumulation of losses, in conjunction with experiences unique to dementia care giving, place family caregivers at risk of complicated grief. This occurs when integration of the death does not take place following bereavement and has been associated with a range of negative health outcomes. The aim of this research was to determine the influence of grief, in addition to other factors representing both positive and negative aspects of the role, on the health related quality of life of family caregivers of people with dementia, prior to and following the death of their relative with dementia. An exploratory research project underpinned by a conceptual framework of caregivers’ adaptation in the context of subjective appraisal of the strains and gains in their role was undertaken. The research comprised three studies. Study 1 was a scoping study that involved a series of semi-structured interviews with thirteen participants who were family caregivers of people with severe dementia or whose relative with dementia had died in the previous twelve months. The results of this study in conjunction with factors identified in the literature informed data collection for the further studies. Study 2 was a cross sectional survey of fifty caregivers recruited when their relative was in the moderate to severe stage of dementia. This study provided the baseline data for Study 3, a prospective cohort follow up study. Study 3 consisted of seventeen participants followed up at two time points after the death of their relative with dementia: six weeks and then six months following the death of the relative with dementia. The scoping study indicated that differences in appraisal of the care giving role and encounters with health professionals were related to levels of grief of caregivers prior to and following the death of the relative with dementia. This was supported in the baseline and follow up studies. In the baseline study, after adjusting for all variables in multivariate regression models, subjective appraisal of burden was found to make a significant contribution (p<.05) to mental health related quality of life. The two dependent variables, anticipatory grief and mental health related quality of life, were significantly (p<.01) correlated at a bivariate level. In the follow up study, linear mixed modelling and multiple regression analysis of data found that subjective appraisal of burden and resilience were significantly associated (p<.05 and p<.01, respectively) with mental health related quality of life over time. In addition, bereavement and complicated grief were significantly associated (p<.05) with mental health following the death of the relative. In this study social support and satisfaction with end of life care were found to be statistically associated (p<.05) with physical health related quality of life over time. The strong relationship between grief of caregivers and their health related quality of life over the entire care giving trajectory and period following the death of their relative highlights the urgent need for further research and interventions in this area. Overall results indicate that addressing the risk and protective factors including subjective appraisal of their care giving role, resilience, social support and satisfaction with end of life care of their relative, has the potential to both ameliorate negative health outcomes and to promote improved health for these caregivers. This research provides important information for development of targeted and appropriate interventions that aim to promote resilience and reduce the personal burden on caregivers of people with dementia.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
Susceptibility to complex traits, by definition, involves aetiological polymorphisms at multiple genetic loci combined with variable contributions by environmental factors. However, the approaches taken to identifying genetic loci implicated in susceptibility to complex traits frequently overlooks the compounding contribution of multiple loci in favour of highlighting a single gene solely responsible for predisposition. It is only in a small minority of cases that this has resulted in clear disease heritability associated with polymorphisms in a single gene. More often, this approach has led to an accumulation of single-gene associations with minor contributions to disease susceptibility. As the genomic era advances and genome-wide screens become higher in resolution and throughput, the need for simultaneous consideration of multiple loci is becoming more important. With special reference to non-Hodgkin’s lymphoma (NHL), this chapter will overview the current progress made in elucidating genetic polymorphisms associated with disease susceptibility. We also present novel data from a high-resolution single nucleotide polymorphism (SNP) microarray screen for susceptibility loci that are involved in NHL. Using an ‘informed approach’, the findings are highlighted within the context of cellular pathways, and provide insight and new ideas for methods of analysis for genome-wide screens for susceptibility.
Resumo:
Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.
Resumo:
This research explores the relationship between international entrepreneurship characteristics and the use of Internet capabilities for the international business processes of the firm. It has been suggested, that the accumulation of a firms Internet capability can assist international operations, especially when operating in fast changing dynamic Internet environments. However, international entrepreneurship characteristics which are seen as a precursor to leveraging Internet capabilities are still vague. Given this finding, eight case studies of small and medium sized travel and tourism firms were selected to investigate the influence of international entrepreneurship characteristics, and Internet capabilities for international business processes. Based on the eight in-depth case studies, the results signify that successful international entrepreneurial firms which encompass high levels of international innovativeness and proactiveness behaviour integrate Internet capabilities to a greater degree. Our findings also indicate that the prior international business experience, international risk-taking propensity and international networking characteristics are not necessarily precursors to successful integration of Internet capabilities for international business processes. On the contrary, international business experience and international networks actually lead to a reliance on traditional mechanisms of internationalisation and can dilute the development of Internet capabilities for international business processes.
Resumo:
The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.
Resumo:
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.
Resumo:
Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.