1000 resultados para ATOMIC QUANTUM FLUID
Resumo:
We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot. We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in which individual events are ignored, and the time-averaged current is considered as a continuous diffusive variable. We include the effect of inefficient measurement and the influence of the relative phase between the two tunneling amplitudes of the double dot/point contact system.
Resumo:
Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a universal inverter, which acts on quantum systems of arbitrary dimension, and we introduce the corresponding generalized concurrence for joint pure states of D-1 X D-2 bipartite quantum systems. We call this generalized concurrence the I concurrence to emphasize its relation to the universal inverter. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT Superoperator.
Resumo:
A mechanical electroscope based on a change in the resonant frequency of a cantilever one micron in size in the presence of charge has recently been fabricated. We derive the decoherence rate of a charge superposition during measurement with such a device using a master equation theory adapted from quantum optics. We also investigate the information produced by such a measurement, using a quantum trajectory approach. Such instruments could be used in mesoscopic electronic systems, and future solid-state quantum computers, so it is useful to know how they behave when used to measure quantum superpositions of charge.
Resumo:
We derive optimal N-photon two-mode input states for interferometric phase measurements. Under canonical measurements the phase variance scales as N-2 for these states, as compared to N-1 or N-1/2 for states considered bq previous authors. We prove, that it is not possible to realize the canonical measurement by counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in the interferometer. However. we introduce a feedback algorithm based on Bayesian inference to control this auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling slightly above N-2. With no feedback, the best result (given that the phase to be measured is completely unknown) is a scaling of N-1. For optimal input states having up to four photons, our feedback scheme is the best possible one, but for higher photon numbers more complicated schemes perform marginally better.
Resumo:
We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.
Resumo:
We present a teleportation protocol based upon the entanglement produced from Fock states incident onto a beam splitter of arbitrary transmissivity. The teleportation fidelity is analyzed, its trends being explained from consideration of a beam splitter's input-output characteristics.
Resumo:
By exhibiting a violation of a novel form of the Bell-CHSH inequality, Żukowski has recently established that the quantum correlations exploited in the standard perfect teleportation protocol cannot be recovered by any local hidden variables model. In the case of imperfect teleportation, we show that a violation of a generalized form of Żukowski's teleportation inequality can only occur if the channel state, considered by itself, already violates a Bell-CHSH inequality. On the other hand, the fact that the channel state violates a Bell-CHSH inequality is not sufficient to imply a violation of Żukowski's teleportation inequality (or any of its generalizations). The implication does hold, however, if the fidelity of the teleportation exceeds ≈ 0.90. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a comparison with its classical counterpart. We find that the relationship between these classical and quantum fidelities is not straightforward, and in general does not seem to provide insight into the physical significance of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be characterized by determining their transfer function and then calculating the fidelity achievable for a hypothetical pure reference input state. (c) 2007 Optical Society of America.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.