672 resultados para 1463
Resumo:
O seguinte trabalho desenvolve o tema da violência contra o movimento popular na Galiléia, segundo o texto de Lucas 13,1-5. Esse texto não tem paralelo nas outras duas fontes sinóticas, nem em João, nem em Tomé, nem no grupo Galileu que escreveu a fonte Q; quanto a esses eventos históricos que narra o texto, não há referência nem em Flávio Josefo, nem em outros historiadores da época. Isso quer dizer, que estes versículos são uma fonte própria de Lucas, uma fonte autônoma, chamada por alguns como fonte L (ou fonte S). A abordagem deste texto de Lucas, feita por grande parte de pesquisadores na área bíblica, preocupa-se com os temas de pecado e arrependimento, deixando na margem a situação das vítimas e as ameaças de Jesus para seus ouvintes. Neste sentido, este trecho de Lucas é de grande importância. Estes versículos expressam a realidade sócio -política. Seu conteúdo é um sinal de conflito e de denúncia contra o sistema imperial romano que não passou desapercebido para o redator do texto e nem para o seu auditório. Trata-se, portanto, da memória das vítimas da opressão. Apresentamos a seguir, a pesquisa em três capítulos esboçados brevemente. O primeiro descreve o agir específico dos procuradores ou governadores romanos, nas províncias comandadas por eles; ao mesmo tempo, a reação do povo e os seus protestos. A nossa ênfase recairá sobre o procurador romano Pôncio Pilatos. Nos valeremos das fontes bíblicas, extra-bíblicas e pseudo-epígrafas. No final, destacaremos a relevância e o papel central do texto Lucas 13,1-5. No segundo capítulo, o centro será a exegese de Lucas 13,1-5, relacionando-o com o contexto maior que, em nosso caso, é chamado itinerário de viagem para Jerusalém , e com um contexto imediato que é o capitulo 13 de Lucas. No final, perguntaremos pelo grupo ou grupos que podem estar por trás destes versículos, e a importância da fonte L, como fonte primeira que se insere no Evangelho de Lucas. O texto de Lucas 13,1-5 aparece como texto autônomo, memória das vítimas; ele contrasta com a visão moderada dos relatos da Paixão nos sinóticos, frente a uma realidade de opressão. O terceiro capítulo constitui-se num ensaio de articulação destes dois capítulos com a realidade atual, especificamente com a situação de guerra, violência e morte na Colômbia, junto aos esforços atuais por reconstruir a memória das vítimas do povo colombiano, memória que dá sentido e dignifica a oferenda de suas vidas.(AU)
Resumo:
The selective production of 2-methyltetrahydrofuran from levulinic acid has been effectively conducted using designed Cu based catalysts and compared with a commercial Pd/C system under microwave irradiation. Optimised conditions for the most active catalysts Cu-MINT (>90% conversion, 75% selectivity to MTHF) and Pd/C (78% conversion, 92% selectivity to MTHF) were further translated into a continuous flow process using the proposed catalysts to find out the deactivation of Cu-MINT under flow conditions (79 vs. 13% conversion with a switch in selectivity to products after 30 min in flow), the high stability of Pd/C (73 vs. 70% conversion at stable selectivity under analogous conditions to those of Cu-MINT) but, most importantly, different relevant pathways to valuable products from levulinic acid depending on the type of catalyst employed.
Resumo:
Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.
Resumo:
Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.
Resumo:
Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.
Resumo:
We have measured experimental adsorption isotherms of water in zeolite LTA4A, and studied the regeneration process by performing subsequent adsorption cycles after degassing at different temperatures. We observed incomplete desorption at low temperatures, and cation rearrangement at successive adsorption cycles. We also developed a new molecular simulation force field able to reproduce experimental adsorption isotherms in the range of temperatures between 273 K and 374 K. Small deviations observed at high pressures are attributed to the change in the water dipole moment at high loadings. The force field correctly describes the preferential adsorption sites of water at different pressures. We tested the influence of the zeolite structure, framework flexibility, and cation mobility when considering adsorption and diffusion of water. Finally, we performed checks on force field transferability between different hydrophilic zeolite types, concluding that classical, non-polarizable water force fields are not transferable.
Resumo:
The present work refers to clay–graphene nanomaterials prepared by a green way using caramel from sucrose and two types of natural clays (montmorillonite and sepiolite) as precursors, with the aim of evaluating their potential use in hydrogen storage. The impregnation of the clay substrates by caramel in aqueous media, followed by a thermal treatment in the absence of oxygen of these clay–caramel intermediates gives rise to graphene-like materials, which remain strongly bound to the silicate support. The nature of the resulting materials was characterized by different techniques such as XRD, Raman spectroscopy and TEM, as well as by adsorption isotherms of N2, CO2 and H2O. These carbon–clay nanocomposites can act as adsorbents for hydrogen storage, achieving, at 298 K and 20 MPa, over 0.1 wt% of hydrogen adsorption excess related to the total mass of the system, and a maximum value close to 0.4 wt% of hydrogen specifically related to the carbon mass. The very high isosteric heat for hydrogen sorption determined from adsorption isotherms at different temperatures (14.5 kJ mol−1) fits well with the theoretical values available for hydrogen storage on materials that show a strong stabilization of the H2 molecule upon adsorption.
Resumo:
La Facultad de Ciencias de la Universidad de Alicante ha constituido una red de trabajo formada por los profesores coordinadores de semestre del Grado en Geología, así como por los coordinadores responsables de la titulación. Los objetivos de esta red son: Asegurar la ejecución efectiva de las enseñanzas conforme al contenido del plan de estudios del título verificado; detectar posibles deficiencias en su implementación, proponiendo recomendaciones y sugerencias de mejora; y evidenciar los progresos en el desarrollo del Sistema de Garantía Interno de Calidad (SGIC) tanto en lo relativo a la revisión de la aplicación del plan de estudios como a la propuesta de acciones para mejorar su diseño en la implantación. El método de trabajo se basa en reuniones en las que los miembros de la red plantearán y debatirán los parámetros e indicadores de seguimiento de la red. Cada coordinador llevará a cabo una investigación individualizada del semestre del que es responsable en coordinación con los miembros de su comisión. Asimismo, se participará en la elaboración de los informes de autoevaluación del título.
Resumo:
The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(II) oxide impregnated on magnetite as a catalyst has been accomplished successfully. The copper catalyst amount is the lowest loading ever reported. The presence of DES showed to be essential since the reaction in the absence of this medium did not proceed. A direct proportional relationship was found between the conductivity of DES medium and the yield obtained. The DES and the catalyst could be reused up to ten times without any detrimental effect on the yield of the reaction, with the aerobic conditions making the protocol highly sustainable, where the only waste is water.
Resumo:
Among the deep eutectic solvents (DES), natural deep eutectic solvents (NADES) formed by D-glucose and racemic malic acid are suitable media to perform the enantioselective L-proline catalyzed intermolecular aldol reaction, creating simultaneously and selectively a C–C bond and a new stereocenter. The scope of the reaction was found to be broad, with products being obtained with good levels of diastereo- and enantioselectivities. Furthermore, when the reaction was performed at a large scale, the catalyst together with the reaction media can be recovered by simple water extraction and reused at least three times affording similar results. Therefore, the use of NADES as reaction media to carry out a VOC-free selective process has been demonstrated for the first time. The process is clean, cheap, simple and scalable and meets most of the criteria to be considered as a sustainable and bio-renewable process, with the reaction media and catalyst arising directly from Nature.
Resumo:
Ripples, present in free standing graphene, have an important influence in the mechanical behavior of this two-dimensional material. In this work we show through nanoindentation simulations, how out-of-plane displacements can be modified by strain resulting in softening of the membrane under compression and stiffening under tension. Irradiation also induces changes in the mechanical properties of graphene. Interestingly, compressed samples, irradiated at low doses are stiffened by the irradiation while samples under tensile strain do not show significant changes in their mechanical properties. These simulations indicate that vacancies, produced by the energetic ions, cannot be the ones directly responsible for this behavior. However, changes in roughness induced by the momentum transferred from the energetic ions to the membrane, can explain these differences. These results provide an alternative explanation to recent experimental observations of stiffening of graphene under low dose irradiation, as well as paths to tailor the mechanical properties of this material via applied strain and irradiation.
Resumo:
Relatório final apresentado para obtenção do grau de Mestre em educação pré-escolar e 1º ciclo do ensino básico