970 resultados para 1 Samuel 3:1-10
Resumo:
Previous studies have shown that exercise (Ex) interventions create a stronger coupling between energy intake (EI) and energy expenditure (EE) leading to increased homeostasis of the energy-balance (EB) regulatory system compared to a diet intervention where an un-coupling between EI and EE occurs. The benefits of weight loss from Ex and diet interventions greatly depend on compensatory responses. The present study investigated an 8-week medium-term Ex and diet intervention program (Ex intervention comprised of 500kcal EE five days per week over four weeks at 65-75% maximal heart rate, whereas the diet intervention comprised of a 500kcal decrease in EI five days per week over four weeks) and its effects on compensatory responses and appetite regulation among healthy individuals using a between- and within-subjects design. Effects of an acute dietary manipulation on appetite and compensatory behaviours and whether a diet and/or Ex intervention pre-disposes individuals to disturbances in EB homeostasis were tested. Energy intake at an ad libitum lunch test meal after a breakfast high- and low-energy pre-load (the high energy pre-load contained 556kcal and the low energy pre-load contained 239kcal) were measured at the Baseline (Weeks -4 to 0) and Intervention (Weeks 0 to 4) phases in 13 healthy volunteers (three males and ten females; mean age 35 years [sd + 9] and mean BMI 25 kg/m2 [sd + 3.8]) [participants in each group included Ex=7, diet=5 (one female in the diet group dropped out midway), thus, 12 participants completed the study]. At Weeks -4, 0 and 4, visual analogue scales (VAS) were used to assess hunger and satiety and liking and wanting (L&W) for nutrient and taste preferences using a computer-based system (E-Prime v1.1.4). Ad libitum test meal EI was consistently lower after the HE pre-load compared to the LE pre-load. However, this was not consistent during the diet intervention however. A pre-load x group interaction on ad libitum test meal EI revealed that during the intervention phase the Ex group showed an improved sensitivity to detect the energy content between the two pre-loads and improved compensation for the ad libitum test meal whereas the diet group’s ability to differentiate between the two pre-loads decreased and showed poorer compensation (F[1,10]=2.88, p-value not significant). This study supports previous findings of the effect Ex and diet interventions have on appetite and compensatory responses; Ex increases and diet decreases energy balance sensitivity.
Resumo:
This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or performing 3D map construction. For loop closure detection CAT-SLAM updates in constant time regardless of map size. We evaluate the effectiveness of CAT-SLAM on a 16km outdoor road network and determine its loop closure performance relative to FAB-MAP. CAT-SLAM recognizes 3 times the number of loop closures for the case where no false positives occur, demonstrating its potential use for robust loop closure detection in large environments.
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
While schools are mandated to teach health education, there is considerable disjunction between government and community expectations, definitions of health literacy, and what schools are currently teaching. Health literacy in the health sector tends to be dominated by a pathogenic approach, where the health of a person is generally referenced against states of illness. In this paper we argue for a salutogenic approach to health literacies. Further, we utilise mainstream literacy theories and models to propose a robust framework for health literacy in schools that accounts for the complexity of health and well being in contemporary society.
Resumo:
In the asymmetric unit of the title co-crystal, C12H14N4O2S . C7H5NO4 there are two independent but conformationally similar heterodimers, which are formed through intermolecular N-H...O(carboxy) and carboxyl O-H...N hydrogen-bond pairs, giving a cyclic motif [graph set R2/2(8)]. The dihedral angles between the rings in the sulfonamide molecules are 78.77(8) and 82.33(9)deg. while the dihedral angles between the ring and the CO2H group in the acids are 2.19(9) and 7.02(10)deg. A two-dimensional structure parallel to the ab plane is generated from the heterodimer units through hydrogen-bonding associations between NH2 and sulfone groups. Between neighbouring two-dimensional arrays there are two types of aromatic pi-pi stacking interactions involving either one of the pyrimidine rings and a 4-nitrobenzoic acid molecule [minimum ring centroid separation = 3.5886(9)A] or two acid molecules [minimum ring centroid separation = 3.7236(10)A].
Resumo:
Abstract Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10−22). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10−34). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.
Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts
Resumo:
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Resumo:
Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].
Resumo:
Complexes of the type \[M(phen)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and phen = 1,10-phenanthroline) were found to co-crystallize to form molecular alloys (solid solutions of molecules) with general formula \[MAxMB1–x(phen)3](PF6)2·0.5H2O in which the relative concentrations of the metal complexes in the crystals closely match those in the crystallizing solution. Consequently, the composition of the co-crystals can be accurately predicted and controlled by modulating the relative concentrations of the metal complexes in the crystallizing solution. Although they are chemically and structurally similar, complexes of the type \[M(bipy)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and bipy = 2,2′-bipyridine) display markedly different behavior upon co-crystallization. In this case, the resulting co-crystals of general formula \[MAxMB1–x(bipy)3](PF6)2 have relative concentrations of the constituent complexes that are markedly different from the relative concentrations of the complexes initially present in the crystallizing solution. For example, when the nickel and iron complexes are co-crystallized from a solution containing a 50:50 ratio of each, the result is the formation of some crystals with a higher proportion of iron and others with a higher proportion of nickel. The relative concentrations of the metal complexes in the crystals can vary from those in the crystallizing solutions by as much as 15%. This result was observed for a range of combinations of metal complexes (Ni/Fe, Ni/Ru, and Fe/Ru) and a range of starting concentrations in the crystallizing solutions (90:10 through to 10:90 in 10% increments). To explain this remarkable result, we introduce the concept of “supramolecular selection”, which is a process driven by molecular recognition that leads to the partially selective aggregation of like molecules during crystallization.
Resumo:
10.1 Histamine and cytokines 10.1.1 Actions of histamine 10.1.2 Drugs that modify the actions of histamine 10.1.3 Cytokines 10.2 Eicosanoids 10.2.1 Cyclooxygenase (COX) and lipooxygenase system 10.2.2 Actions of eicosanoids 10.2.3 Drugs that modify the actions of eicosanoids 10.2.3.1 Inhibit phospholipase A2 10.2.3.2 Non-selective cyclooxygenase inhibitors 10.2.3.3 Selective COX-2 inhibitors 10.2.3.4 Agonists at prostaglandin receptors 10.2.3.5 Leukotriene receptor antagonists 10.3. 5-Hydroxtryptamine (serotonin), nitric oxide, and endothelin 10.3.1 5-HT and migraine 10.3.2 5-HT and the gastrointestinal tract 10.3.3 Nitric oxide and angina 10.3.4 Nitric oxide and erectile dysfunction 10.3.5 Endothelin and pulmonary hypertension
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h−1; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. −3.18 km · h−1; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h−1; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001–0.05; d = 1.31–5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.