986 resultados para viral genome
Resumo:
Upon cell infection, some viruses integrate their genome into the host chromosome, either as part of their life cycle (such as retroviruses), or incidentally. While possibly promoting long-term persistence of the virus into the cell, viral genome integration may also lead to drastic consequences for the host cell, including gene disruption, insertional mutagenesis and cell death, as well as contributing to species evolution. This review summarizes the current knowledge on viruses integrating their genome into the host genome and the consequences for the host cell.
Resumo:
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.
Resumo:
Wild-type A75/17-Canine distemper virus (CDV) is a highly virulent strain, which induces a persistent infection in the central nervous system (CNS) with demyelinating disease. Wild-type A75/17-CDV, which is unable to replicate in cell lines to detectable levels, was adapted to grow in Vero cells and was designated A75/17-V. Sequence comparison between the two genomes revealed seven nucleotide differences located in the phosphoprotein (P), the matrix (M) and the large (L) genes. The P gene is polycistronic and encodes two auxiliary proteins, V and C, besides the P protein. The mutations resulted in amino acid changes in the P and V, but not in the C protein, as well as in the M and L proteins. Here, a rescue system was developed for the A75/17-V strain, which was shown to be attenuated in vivo, but retains a persistent infection phenotype in Vero cells. In order to track the recombinant virus, an additional transcription unit coding for the enhanced green fluorescent protein (eGFP) was inserted at the 3' proximal position in the A75/17-V cDNA clone. Reverse genetics technology will allow us to characterize the genetic determinants of A75/17-V CDV persistent infection in cell culture.
Resumo:
The objective of this work was to monitor the maintenance of Citrus tristeza virus (CTV) protective isolates stability in selected clones of 'Pêra' sweet orange (Citrus sinensis), preimmunized or naturally infected by the virus, after successive clonal propagations. The work was carried out in field conditions in the north of Paraná State, Brazil. Coat protein gene (CPG) analysis of 33 isolates collected from 16 clones of 'Pêra' sweet orange was performed using single strand conformational polymorphism (SSCP). Initially, the isolates were characterized by symptoms of stem pitting observed in clones. Then viral genome was extracted and used as template for the amplification of CPG by reverse transcription polimerase chain reaction (RTPCR). RTPCR products electrophoretic profiles were analyzed using the Jaccard coefficient and the UPGMA method. The majority of the clones had weak to moderate stem pitting symptoms and its CTV isolates showed alterations in the SSCP profiles. However, the stability of the protective complex has been maintained, except for isolates from two analised clones. Low genetic variability was observed within the isolates during the studied years.
Resumo:
Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.
Resumo:
Two Brazilian Potato virus Y (PVY) isolates were biologically characterized as necrotic (PVY-NBR) and common (PVY-OBR) based upon symptoms on test plants. Additional characterization was performed by sequencing a cDNA corresponding to the 3' terminal region of the viral genome. The sequence consisted of 195 nucleotides (nt) coding part of the nuclear inclusion body b (NIb) gene, 804 nt of the coat protein (CP) gene, and 328 nt (PVY-OBR) or 326 nt (PVY-NBR) of the 3'-untranslated region (UTR). Translation of the sequence resulted in one single open reading frame with part of the NIb and a CP of 267 amino acids. The two isolates shared 95.1% similarity in the CP amino acid sequence. The CP and the 3'-UTR sequence of the Brazilian isolates were compared to those of other PVY isolates previously reported and unrooted phylogenetic trees were constructed. The trees revealed a separation of two distinct clusters, one comprising most of the common strains and the other comprising the necrotic strains. PVY-OBR was clustered in the common group and PVY-NBR in the necrotic one.
Resumo:
Leafroll is an economically important disease affecting grapevines (Vitis spp.). Nine serologically distinct viruses, Grapevine leafroll-associated virus-1 through 9, are associated with this disease. The present study describes the coat protein gene sequence of four GLRaV-3 isolates occurring in the São Francisco River basin, Northeastern Brazil. The viral RNA was extracted from GLRaV-3 ELISA-positive plants and the complete coat protein gene was amplified by RT-PCR. Sequences were generated automatically and compared to the complete coat protein sequence from North American (NY1) and Chinese (Dawanhong Nº2 and SL10) GLRaV-3 isolates. The four studied isolates, named Pet-1 through 4, showed deduced amino acid identities of 98-100% (Pet-1 through 3) and 95% (Pet-4) with North American and Chinese isolates. A total of seventeen amino acid substitutions was detected among the four characterized isolates in comparison to the NY1, Dawanhong No.2 and SL10 sequences. The results indicated the existence of natural variation among GLRaV-3 isolates from grapevines, also demonstrating a lack of correlation between sequence data and geographic origin. This variability should be considered when selecting regions of the viral genome targeted for reliable and consistent virus molecular detection.
Resumo:
Two Lettuce mosaic virus isolates capable of overcoming the resistance afforded by the resistance gene mo1² in lettuce, LMV-AF199 from Brazil, and LMV-E, an European isolate, were evaluated for the rapidity and severity of symptoms induced on the lettuce variety Salinas 88 (mo1²). The mosaic symptoms on Salinas 88 plants inoculated with LMV-AF199 appeared 7 days post-inoculation (dpi) and 15 dpi for LMV-E. The symptoms induced by LMV-AF199 in this cultivar were also more severe than those induced by LMV-E. In order to identify the region of the viral genome responsible for this phenotype, recombinant viruses were constructed between these isolates and the phenotype of each recombinant was analysed. The region encoding proteins P1 and HcPro from LMV-AF199 was associated with the increased virulence in Salinas 88.
Resumo:
Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies.Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.
Resumo:
Bovine papillomavirus type 8 (BPV-8) was first detected and described in teat warts as well as in healthy teat skin from cattle raised in Japan. The entire viral genome was sequenced in 2007. Additionally, a variant of BPV-8, BPV-8-EB, was also identified from papillomatous lesions of a European bison in Slovakia. In Brazil, despite the relatively common occurrence of BPV infections, the identification and determination of viral types present in cattle is still sporadic. The aim of this study is to report the occurrence of the recently described BPV-8 in Brazil. The virus was identified in a skin warts obtained from a beef cattle herd located in Parana state, southern Brazil. The papilloma had a macular, non-verrucous gross aspect and was located on the dorsal thorax of a cow. Polymerase chain reaction (PCR) was performed using generic primers for partial amplification of L1 gene. The obtained amplicon (480bp) was cloned and two selected clones were sequenced. The nucleotide sequence was compared to existing papillomaviral genomic sequences, identifying the virus as BPV type 8. This study represents the first report of BPV-8 occurrence in Brazil, what suggests its presence among Brazilian cattle.
Resumo:
Fibropapillomatosis (FP) is a benign tumoral disease that affects sea turtles, hampering movement, sight and feeding, ultimately leading to death. In Brazil, the disease was described for the first time in 1986. Research suggests the involvement of a herpesvirus in association with environmental and genetic factors as causal agents of FP. The objective of the present study was to detect and characterize this herpesvirus in sea turtles living in the coast of state Rio Grande do Sul (RS), Brazil. From October 2008 to July 2010, 14 turtles were observed between the beaches of Torres and Tavares, of which 11 were green turtles (Chelonia mydas) and 3 were loggerhead turtles (Caretta caretta). All turtles were young and mean curved carapace length was 37.71±7.82cm, and varied from 31 to 55cm. Only one green turtle presented a 1cm, papillary, pigmented fibropapilloma. Skin and fibropapilloma samples were analyzed by conventional and real time PCR assays to detect and quantify herpesvirus. All skin samples were negative, though the fibropapilloma specimen was positive in both tests. Viral load was 9,917.04 copies of viral genome per milligram of tissue. The DNA fragment amplified from the fibropapilloma sample was sequenced and allocated in the Atlantic phylogeographic group. This study reports the first molecular characterization of herpesvirus associated with fibropapilloma in turtles from the coast of RS.
Resumo:
Few data are available in the literature concerning the efficacy of standard hysteroscope disinfection procedures to prevent hepatitis B transmission. The aim of the present study was to determine the risk of hepatitis B virus (HBV) transmission during hysteroscopy among anti-HBc-seropositive women. Serum and hysteroscopic samples were collected from 62 women after diagnostic hysteroscopy. All samples were tested for serologic HBV markers. Polymerase chain reactions (PCR) were carried out to amplify regions C and S of the viral genome and only samples amplified by both pairs of primers were considered to be positive. Anti-HBc was repeatedly reactive in 48 (77%) of 62 serum samples, and HBsAg was detected in 8 (13%). At least one HBV serologic marker was found in 49 (79%) samples. Only one sample was HBsAg positive and anti-HBc negative. HBV-DNA was detected by PCR in 7 serum samples but in only 3 hysteroscopic samples obtained just after hysteroscopy. It is noteworthy that high levels of anti-HBc IgM were detected in one HBsAg-negative patient who showed an HBV-DNA-positive hysteroscopic sample. An elevated sample/cut-off ratio for anti-HBc IgM suggests recent infection and reinforces the need for testing for HBsAg and anti-HBc before hysteroscopy, since acute hepatitis B can be clinically asymptomatic. Viral DNA was not detected in any hysteroscopic samples collected after washing and disinfecting procedures with glutaraldehyde. We conclude that HBV-DNA can be found in the hysteroscope soon after hysteroscopy, but standard disinfecting procedures are effective in viral removal.
Resumo:
Genotype E of hepatitis B virus (HBV) has not been described in Brazil and is found mainly in Africa. Genotype A is the most prevalent in Brazil, and genotypes B, C, D, and F have already been reported. We report here an HBV genotype E-infected patient and some characterization of surface (S) protein, DNA polymerase (P) and precore/core (preC/C) coding regions based on the viral genome. The patient is a 31-year-old black man with chronic hepatitis B who was born and raised in Angola. He has been followed by a hepatologist in São Paulo, Brazil, since November 2003, and he is a frequent traveler to Latin America, Africa, and Europe. In 2003, he was diagnosed with HBV infection and started treatment with lamivudine with the later addition of adefovir dipivoxil. No known risk factor was identified. Serologically, he is HBsAg and anti-HBe positive, but HBeAg and anti-HBs negative. DNA sequence analysis of the S/P region confirmed that this patient is infected with genotype E, subtype ayw4. The preC/C region showed G1896A and G1899A mutations but no mutations in the basal core promoter. Nucleotide substitutions common in genotype E were also observed (C1772, T1858 and A1757). Although this is not an autochthonous case and there is no evidence of further spread, the description of this case in Brazil highlights the current risk of viral genotypes spreading with unprecedented speed due to constant travel around the world.
Resumo:
Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.
Resumo:
Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.