864 resultados para topology optimization
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, nanometric displacement amplitudes of a Piezoelectric Flextensional Actuator (PFA) designed using the topology optimization technique and operating in its linear range are measured by using a homodyne Michelson interferometer. A new improved version of the J1...J4 method for optical phase measurements, named J1...J5 method, is presented, which is of easier implementation than the original one. This is a passive phase detection scheme, unaffected by signal fading, source instabilities and changes in visibility. Experimental results using this improvement were compared with those obtained by using the J1... J4, J1...J6(pos) and J1...J 6(neg) methods, concluding that the dynamic range is increased while maintaining the sensitivity. Analysis based on the 1/f voltage noise and random fading show the new method is more stable to phase drift than all those methods. © 2012 IEEE.
Resumo:
Piezoelectric transducers are widely used in high-resolution positioning systems. This paper reports the experimental analysis of a novel piezoelectric flextensional actuator (PFA), which is designed by using the topology-optimization method through a low-cost homodyne Michelson interferometer. By applying the J(1) - J(4) method for signal demodulation, which provides a linear and direct measurement of dynamic optical phase shift independent of fading, the nanometric displacements of the PFA were determined. Linearity and frequency response of the PFA were evaluated up to 50 kHz. PFA calibration factor and amplification rate were determined for the PFA operating in the quasi-static regime. To confirm the observed frequencies of resonance, an impedance analyzer is also utilized to measure the magnitude and phase of the PFA admittance.
Resumo:
Die Topologieoptimierung hat sich in den letzten Jahren zu einer sehr praktischen und vielseitig ein-setzbaren Design- und Entwicklungsmethode entwickelt. Diese Methode soll nun an einer Seilscheibe, die aus der Industrie nicht mehr wegzudenken ist, angewendet werden. Im Vordergrund steht vor allem die Reduzierung der Masse sowie die Anpassung der Speichenform an die unterschiedlichen Randbedingungen.
Resumo:
This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and nonepileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that (1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and (2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).
Resumo:
This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).
Desenvolvimento da célula base de microestruturas periódicas de compósitos sob otimização topológica
Resumo:
This thesis develops a new technique for composite microstructures projects by the Topology Optimization process, in order to maximize rigidity, making use of Deformation Energy Method and using a refining scheme h-adaptative to obtain a better defining the topological contours of the microstructure. This is done by distributing materials optimally in a region of pre-established project named as Cell Base. In this paper, the Finite Element Method is used to describe the field and for government equation solution. The mesh is refined iteratively refining so that the Finite Element Mesh is made on all the elements which represent solid materials, and all empty elements containing at least one node in a solid material region. The Finite Element Method chosen for the model is the linear triangular three nodes. As for the resolution of the nonlinear programming problem with constraints we were used Augmented Lagrangian method, and a minimization algorithm based on the direction of the Quasi-Newton type and Armijo-Wolfe conditions assisting in the lowering process. The Cell Base that represents the composite is found from the equivalence between a fictional material and a preescribe material, distributed optimally in the project area. The use of the strain energy method is justified for providing a lower computational cost due to a simpler formulation than traditional homogenization method. The results are presented prescription with change, in displacement with change, in volume restriction and from various initial values of relative densities.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Three dimensional (3D) printers of continuous fiber reinforced composites, such as MarkTwo (MT) by Markforged, can be used to manufacture such structures. To date, research works devoted to the study and application of flexible elements and CMs realized with MT printer are only a few and very recent. A good numerical and/or analytical tool for the mechanical behavior analysis of the new composites is still missing. In addition, there is still a gap in obtaining the material properties used (e.g. elastic modulus) as it is usually unknown and sensitive to printing parameters used (e.g. infill density), making the numerical simulation inaccurate. Consequently, the aim of this thesis is to present several work developed. The first is a preliminary investigation on the tensile and flexural response of Straight Beam Flexures (SBF) realized with MT printer and featuring different interlayer fiber volume-fraction and orientation, as well as different laminate position within the sample. The second is to develop a numerical analysis within the Carrera' s Unified Formulation (CUF) framework, based on component-wise (CW) approach, including a novel preprocessing tool that has been developed to account all regions printed in an easy and time efficient way. Among its benefits, the CUF-CW approach enables building an accurate database for collecting first natural frequencies modes results, then predicting Young' s modulus based on an inverse problem formulation. To validate the tool, the numerical results are compared to the experimental natural frequencies evaluated using a digital image correlation method. Further, we take the CUF-CW model and use static condensation to analyze smart structures which can be decomposed into a large number of similar components. Third, the potentiality of MT in combination with topology optimization and compliant joints design (CJD) is investigated for the realization of automated machinery mechanisms subjected to inertial loads.
Resumo:
The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.
Resumo:
Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.
Resumo:
An algorithm inspired on ant behavior is developed in order to find out the topology of an electric energy distribution network with minimum power loss. The algorithm performance is investigated in hypothetical and actual circuits. When applied in an actual distribution system of a region of the State of Sao Paulo (Brazil), the solution found by the algorithm presents loss lower than the topology built by the concessionary company.
Resumo:
Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25-50%.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores