976 resultados para topographic analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Placental and fetal growth requires high rates of cellular turnover and differentiation, which contributes to conceptus development. The trophoblast has unique properties and a wide range of metabolic, endocrine and angiogenic functions, but the proliferative profile of the bovine placenta characterized by flow cytometry analysis and its role in fetal development are currently uncharacterized. Complete understanding of placental apoptotic and proliferative rates may be relevant to development, especially if related to the pathogenesis of pregnancy losses and placental abnormalities. Methods: In this study, the proliferation activity and apoptosis in different regions of normal bovine placenta (central and boundary regions of placentomes, placentomal fusion, microplacentomes, and interplacentomal regions), from distinct gestation periods (Days 70 to 290 of pregnancy), were analyzed by flow cytometry. Results: Our results indicated that microplacentomes presented a lower number of apoptotic cells throughout pregnancy, with a higher proliferative activity by the end of gestation, suggesting that such structures do not contribute significantly to normal of placental functions and conceptus development during pregnancy. The placentome edges revealed a higher number of apoptotic cells from Day 170 on, which suggests that placentome detachment may well initiate in this region. Conclusion: Variations involving proliferation and apoptotic rates may influence placental maturation and detachment, compromising placental functions and leading to fetal stress, abnormalities in development and abortion, as frequently seen in bovine pregnancies from in vitro fertilization and cloning procedures. Our findings describing the pattern of cell proliferation and apoptosis in normal bovine pregnancies may be useful for unraveling some of the developmental deviations seen in nature and after in vitro embryo manipulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite favourable gravitational instability and ridge-push, elastic and frictional forces prevent subduction initiation fromarising spontaneously at passive margins. Here,we argue that forces arising fromlarge continental topographic gradients are required to initiate subduction at passivemargins. In order to test this hypothesis,we use 2Dnumerical models to assess the influence of the Andean Plateau on stressmagnitudes and deformation patterns at the Brazilian passive margin. The numerical results indicate that “plateau-push” in this region is a necessary additional force to initiate subduction. As the SE Brazilianmargin currently shows no signs of self-sustained subduction, we examined geological and geophysical data to determine if themargin is in the preliminary stages of subduction initiation. The compiled data indicate that the margin is presently undergoing tectonic inversion, which we infer as part of the continental–oceanic overthrusting stage of subduction initiation. We refer to this early subduction stage as the “Brazilian Stage”, which is characterized by N10 kmdeep reverse fault seismicity at themargin, recent topographic uplift on the continental side, thick continental crust at themargin, and bulging on the oceanic side due to loading by the overthrusting continent. The combined results of the numerical simulations and passivemargin analysis indicate that the SE Brazilian margin is a prototype candidate for subduction initiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG. Methodology/Principal Findings: In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band. Conclusions/Significance: Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures of underlying distributed neuronal networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Alzheimer's disease (AD) patients, episodic memory impairments are apparent, yet semantic memory difficulties are also observed. While the episodic pathology has been thoroughly studied, the neurophysiological mechanisms of the semantic impairments remain obscure. Semantic dementia (SD) is characterized by isolated semantic memory deficits. The present study aimed to find an early marker of mild AD and SD by employing a semantic priming paradigm during electroencephalogram recordings. Event-related potentials (ERP) of early (P1, N1) and late (N400) word processing stages were obtained to measure semantic memory functions. Separately, baseline cerebral blood flow (CBF) was acquired with arterial spin labeling. Thus, the analysis focused on linear regressions of CBF with ERP topographical similarity indices in order to find the brain structures that showed altered baseline functionality associated with deviant ERPs. All participant groups showed semantic priming in their reaction times. Furthermore, decreased CBF in the temporal lobes was associated with abnormal N400 topography. No significant CBF clusters were found for the early ERPs. Taken together, the neurophysiological results suggested that the automatic spread of activation during semantic word processing was preserved in mild dementia, while controlled access to the words was impaired. These findings suggested that N400-topography alterations might be a potential marker for the detection of early dementia. Such a marker could be beneficial for differential diagnosis due to its low cost and non-invasive application as well as its relationship with semantic memory dysfunctions that are closely associated to the cortical deterioration in regions crucial for semantic word processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious keratoconjunctivitis (IKC) caused by Mycoplasma conjunctivae is a widespread ocular affection of free-ranging Caprinae in the Alpine arc. Along with host and pathogen characteristics, it has been hypothesized that environmental factors such as UV light are involved in the onset and course of the disease. This study aimed at evaluating the role of topographic features as predisposing or aggravating factors for IKC in Alpine chamois (Rupicapra rupicapra rupicapra) and Alpine ibex (Capra ibex ibex). Geospatial analysis was performed to assess the effect of aspect (northness) and elevation on the severity of the disease as well as on the mycoplasmal load in the eyes of affected animals, using data from 723 ibex and chamois (583 healthy animals, 105 IKC-affected animals, and 35 asymptomatic carriers of M. conjunctivae), all sampled in the Swiss Alps between 2008 and 2010. An influence of northness was not found, except that ibex with moderate and severe signs of IKC seem to prefer more north-oriented slopes than individuals without corneal lesions, possibly hinting at a sunlight sensitivity consequent to the disease. In contrast, results suggest that elevation influences the disease course in both ibex and chamois, which could be due to altitude-associated environmental conditions such as UV radiation, cold, and dryness. The results of this study support the hypothesis that environmental factors may play a role in the pathogenesis of IKC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new high-resolution elevation model of Greenland, including the ice sheet as well as the ice free regions, is presented. It is the first published full coverage model, computed with an average resolution of 2 km and providing an unprecedented degree of detail. The topography is modeled from a wide selection of data sources, including satellite radar altimetry from Geosat and ERS 1, airborne radar altimetry and airborne laser altimetry over the ice sheet, and photogrammetric and manual map scannings in the ice free region. The ice sheet model accuracy is evaluated by omitting airborne laser data from the analysis and treating them as ground truth observations. The mean accuracy of the ice sheet elevations is estimated to be 12-13 m, and it is found that on surfaces of a slope between 0.2° and 0.8°, corresponding to approximately 50% of the ice sheet, the model presents a 40% improvement over models based on satellite altimetry alone. On coastal bedrock, the model is compared with stereo triangulated reference points, and it is found that the model accuracy is of the order of 25-35 m in areas covered by stereo photogrammetry scannings and between 200 and 250 m elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cereals microstructure is one of the primary quality attributes of cereals. Cereals rehydration and milk diffusion depends on such microstructure and thus, the crispiness and the texture, which will make it more palatable for the final consumer. Magnetic Resonance Imaging (MRI) is a very powerful topographic tool since acquisition parameter leads to a wide possibility for identifying textures, structures and liquids mobility. It is suited for non-invasive imaging of water and fats. Rehydration and diffusion cereals processes were measured by MRI at different times and using two different kinds of milk, varying their fat level. Several images were obtained. A combination of textural analysis (based on the analysis of histograms) and segmentation methods (in order to understand the rehydration level of each variety of cereals) were performed. According to the rehydration level, no advisable clustering behavior was found. Nevertheless, some differences were noticeable between the coating, the type of milk and the variety of cereals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erosion potential and the effects of tillage can be evaluated from quantitative descriptions of soil surface roughness. The present study therefore aimed to fill the need for a reliable, low-cost and convenient method to measure that parameter. Based on the interpretation of micro-topographic shadows, this new procedure is primarily designed for use in the field after tillage. The principle underlying shadow analysis is the direct relationship between soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. The results obtained with this method were compared to the statistical indexes used to interpret field readings recorded by a pin meter. The tests were conducted on 4-m2 sandy loam and sandy clay loam plots divided into 1-m2 subplots tilled with three different tools: chisel, tiller and roller. The highly significant correlation between the statistical indexes and shadow analysis results obtained in the laboratory as well as in the field for all the soil?tool combinations proved that both variability (CV) and dispersion (SD) are accommodated by the new method. This procedure simplifies the interpretation of soil surface roughness and shortens the time involved in field operations by a factor ranging from 12 to 20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic evaluation methodology is applied to an existing viaduct in the south of Spain, near Granada, which is a medium seismicity region. The influence of both geology and topography in the spatial variability of ground motion are studied as well as seismic hazard analysis and ground motion characterization. Artificial hazard-consistent ground motion records are synthesised applying seismic hazard analysis and site effects are estimated through a diffraction study. Direct BEM is used to calculate the valley displacement response to vertically propagating SV waves and transfer functions are generated allowing the transformation of free field motion to motion at each support. A closed formulae is used to estimate these transfer function. Finally, the results obtained are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To define a range of normality for the vectorial parameters Ocular Residual Astigmatism (ORA) and topography disparity (TD) and to evaluate their relationship with visual, refractive, anterior and posterior corneal curvature, pachymetric and corneal volume data in normal healthy eyes. Methods: This study comprised a total of 101 consecutive normal healthy eyes of 101 patients ranging in age from 15 to 64 years old. In all cases, a complete corneal analysis was performed using a Scheimpflug photography-based topography system (Pentacam system Oculus Optikgeräte GmbH). Anterior corneal topographic data were imported from the Pentacam system to the iASSORT software (ASSORT Pty. Ltd.), which allowed the calculation of the ocular residual astigmatism (ORA) and topography disparity (TD). Linear regression analysis was used for obtaining a linear expression relating ORA and posterior corneal astigmatism (PCA). Results: Mean magnitude of ORA was 0.79 D (SD: 0.43), with a normality range from 0 to 1.63 D. 90 eyes (89.1%) showed against-the-rule ORA. A weak although statistically significant correlation was found between the magnitudes of posterior corneal astigmatism and ORA (r = 0.34, p < 0.01). Regression analysis showed the presence of a linear relationship between these two variables, although with a very limited predictability (R2: 0.08). Mean magnitude of TD was 0.89 D (SD: 0.50), with a normality range from 0 to 1.87 D. Conclusion: The magnitude of the vector parameters ORA and TD is lower than 1.9 D in the healthy human eye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. We aimed to characterize the distribution of the vector parameters ocular residual astigmatism (ORA) and topography disparity (TD) in a sample of clinical and subclinical keratoconus eyes, and to evaluate their diagnostic value to discriminate between these conditions and healthy corneas. Methods. This study comprised a total of 43 keratoconic eyes (27 patients, 17–73 years) (keratoconus group), 11 subclinical keratoconus eyes (eight patients, 11–54 years) (subclinical keratoconus group) and 101 healthy eyes (101 patients, 15–64 years) (control group). In all cases, a complete corneal analysis was performed using a Scheimpflug photography-based topography system. Anterior corneal topographic data was imported from it to the iASSORT software (ASSORT Pty. Ltd), which allowed the calculation of ORA and TD. Results. Mean magnitude of the ORA was 3.23 ± 2.38, 1.16 ± 0.50 and 0.79 ± 0.43 D in the keratoconus, subclinical keratoconus and control groups, respectively (p < 0.001). Mean magnitude of the TD was 9.04 ± 8.08, 2.69 ± 2.42 and 0.89 ± 0.50 D in the keratoconus, subclinical keratoconus and control groups, respectively (p < 0.001). Good diagnostic performance of ORA (cutoff point: 1.21 D, sensitivity 83.7 %, specificity 87.1 %) and TD (cutoff point: 1.64 D, sensitivity 93.3 %, specificity 92.1 %) was found for the detection of keratoconus. The diagnostic ability of these parameters for the detection of subclinical keratoconus was more limited (ORA: cutoff 1.17 D, sensitivity 60.0 %, specificity 84.2 %; TD: cutoff 1.29 D, sensitivity 80.0 %, specificity 80.2 %). Conclusion. The vector parameters ORA and TD are able to discriminate with good levels of precision between keratoconus and healthy corneas. For the detection of subclinical keratoconus, only TD seems to be valid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master, Civil Engineering) -- Queen's University, 2016-06-01 00:03:02.939