978 resultados para tag-recapture
Resumo:
In this paper, we describe ongoing work on online banking customization with a particular focus on interaction. The scope of the study is confined to the Australian banking context where the lack of customization is evident. This paper puts forward the notion of using tags to facilitate personalized interactions in online banking. We argue that tags can afford simple and intuitive interactions unique to every individual in both online and mobile environments. Firstly, through a review of related literature, we frame our work in the customization domain. Secondly, we define a range of taggable resources in online banking. Thirdly, we describe our preliminary prototype implementation with respect to interaction customization types. Lastly, we conclude with a discussion on future work.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup.
Resumo:
Background: Dopamine D2 receptor (DRD2) is thought to be critical in regulating the dopaminergic pathway in the brain which is known to be important in the aetiology of schizophrenia. It is therefore not surprising that most antipsychotic medication acts on the Dopamine D2 receptor. DRD2 is widely expressed in brain, levels are reduced in brains of schizophrenia patients and DRD2 polymorphisms have been associated with reduced brain expression. We have previously identified a genetic variant in DRD2, rs6277 to be strongly implicated in schizophrenia susceptibility. Methods: To identity new associations in the DRD2 gene with disease status and clinical severity, we genotyped seven single nucleotide polymorphisms (SNPs) in DRD2 using a multiplex mass spectrometry method. SNPs were chosen using a haplotype block-based gene-tagging approach so the entire DRD2 gene was represented. Results: One polymorphism rs2734839 was found to be significantly associated with schizophrenia as well as late onset age. Individuals carrying the genetic variation were more than twice as likely to have schizophrenia compared to controls. Conclusions: Our results suggest that DRD2 genetic variation is a good indicator for schizophrenia risk and may also be used as a predictor age of onset.
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. One of the most popular web personalization systems is recommender systems. In recommender systems choosing user information that can be used to profile users is very crucial for user profiling. In Web 2.0, one facility that can help users organize Web resources of their interest is user tagging systems. Exploring user tagging behavior provides a promising way for understanding users’ information needs since tags are given directly by users. However, free and relatively uncontrolled vocabulary makes the user self-defined tags lack of standardization and semantic ambiguity. Also, the relationships among tags need to be explored since there are rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach for learning tag ontology based on the widely used lexical database WordNet for capturing the semantics and the structural relationships of tags. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. To personalize further, clustering of users is performed to generate a more accurate ontology for a particular group of users. In order to evaluate the usefulness of the tag ontology, we use the tag ontology in a pilot tag recommendation experiment for improving the recommendation performance by exploiting the semantic information in the tag ontology. The initial result shows that the personalized information has improved the accuracy of the tag recommendation.
Resumo:
In this paper we describe tag-based interaction afforded by a tag-based interface in online and mobile banking, and present our preliminary usability evaluation findings. We conducted a pilot usability study with a group of banking users by comparing the present 'conventional' interface and tag-based interface. The results show that participants perceive the tag-based interface as more usable in both online and mobile contexts. Participants also rated the tag-based interface better despite their unfamiliarity and perceived it as more user-friendly. Additionally, the results highlight that tag-based interaction is more effective in the mobile context especially to inexperienced mobile banking users. This in turn could have a positive effect on the adoption and acceptance of mobile banking in general and also specifically in Australia. We discuss our findings in more detail in the later sections of this paper and conclude with a discussion on future work.
Resumo:
This paper presents a comparative study to evaluate the usability of a tag-based interface alongside the present 'conventional' interface in the Australian mobile banking context. The tag-based interface is based on user-assigned tags to banking resources with support for different types of customization. And the conventional interface is based on standard HTML objects such as select boxes, lists, tables and etc, with limited customization. A total of 20 banking users evaluated both interfaces based on a set of tasks and completed a post-test usability questionnaire. Efficiency, effectiveness, and user satisfaction were considered to evaluate the usability of the interfaces. Results of the evaluation show improved usability in terms of user satisfaction with the tag-based interface compared to the conventional interface. This outcome is more apparent among participants without prior mobile banking experience. Therefore, there is a potential for the tag-based interface to improve user satisfaction of mobile banking and also positively affect the adoption and acceptance of mobile banking, particularly in Australia.
Resumo:
Tags or personal metadata for annotating web resources have been widely adopted in Web 2.0 sites. However, as tags are freely chosen by users, the vocabularies are diverse, ambiguous and sometimes only meaningful to individuals. Tag recommenders may assist users during tagging process. Its objective is to suggest relevant tags to use as well as to help consolidating vocabulary in the systems. In this paper we discuss our approach for providing personalized tag recommendation by making use of existing domain ontology generated from folksonomy. Specifically we evaluated the approach in sparse situation. The evaluation shows that the proposed ontology-based method has improved the accuracy of tag recommendation in this situation.
Resumo:
Tag recommendation is a specific recommendation task for recommending metadata (tag) for a web resource (item) during user annotation process. In this context, sparsity problem refers to situation where tags need to be produced for items with few annotations or for user who tags few items. Most of the state of the art approaches in tag recommendation are rarely evaluated or perform poorly under this situation. This paper presents a combined method for mitigating sparsity problem in tag recommendation by mainly expanding and ranking candidate tags based on similar items’ tags and existing tag ontology. We evaluated the approach on two public social bookmarking datasets. The experiment results show better accuracy for recommendation in sparsity situation over several state of the art methods.
Resumo:
This thesis is an exploration of customisation in online and mobile banking. It investigates the application of user-tags to facilitate customised interactions in desktop and mobile devices, and its impact on usability. The thesis through a comparative study explains that customisation can positively affect usability especially for younger users, leading to higher levels of satisfaction.
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
This study provides validity evidence for the Capture-Recapture (CR) method, borrowed from ecology, as a measure of second language (L2) productive vocabulary size (PVS). Two separate “captures” of productive vocabulary were taken using written word association tasks (WAT). At Time 1, 47 bilinguals provided at least 4 associates to each of 30 high-frequency stimulus words in English, their first language (L1), and in French, their L2. A few days later (Time 2), this procedure was repeated with a different set of stimulus words in each language. Since the WAT was used, both Lex30 and CR PVS scores were calculated in each language. Participants also completed an animacy judgment task assessing the speed and efficiency of lexical access. Results indicated that, in both languages, CR and Lex30 scores were significantly positively correlated (evidence of convergent validity). CR scores were also significantly larger in the L1, and correlated significantly with the speed of lexical access in the L2 (evidence of construct validity). These results point to the validity of the technique for estimating relative L2 PVS. However, CR scores are not a direct indication of absolute vocabulary size. A discussion of the method’s underlying assumptions and their implications for interpretation are provided.