945 resultados para systems biology
Resumo:
In this paper we discuss the dualism of gene networks and their role in systems biology. We argue that gene networks ( 1) can serve as a conceptual framework, forming a fundamental level of a phenomenological description, and ( 2) are a means to represent and analyze data. The latter point does not only allow a systems analysis but is even amenable for a direct approach to study biological function. Here we focus on the clarity of our main arguments and conceptual meaning of gene networks, rather than the causal inference of gene networks from data. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 379-391 DOI: 10.1002/wsbm.134
Resumo:
A reduction in the numbers of macroinvertebrates present in soil may have a negative effect on soil structure, infiltration rates, and gas exchanges. Soil pollution by metal is known to have a detrimental effect on soil macrofauna. The aim of the present study was to evaluate (1) direct and indirect effects of soil pollution on soil macroinvertebrate bioturbation and (2) effects of the two macroinvertebrate communities found in a polluted and a nonpolluted area (one supposed sensitive, the other tolerant to metals) on burrow systems parameters. Macroinvertebrate porosity was studied using X-ray tomography. Three-dimensional reconstructions and characterisation of the burrow system were obtained using image analysis. Results showed that metal pollution principally affected the spatial distribution of macropores (more macropores were found near the soil surface) and the shape of the burrow system (branching rate was higher in the polluted soil), whereas soil macroinvertebrate composition principally affects burrow density parameters (the number of burrows was higher for the sensitive macroinvertebrate community).
Resumo:
Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.
Resumo:
Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.
Resumo:
Introduction Gene expression is an important process whereby the genotype controls an individual cell’s phenotype. However, even genetically identical cells display a variety of phenotypes, which may be attributed to differences in their environment. Yet, even after controlling for these two factors, individual phenotypes still diverge due to noisy gene expression. Synthetic gene expression systems allow investigators to isolate, control, and measure the effects of noise on cell phenotypes. I used mathematical and computational methods to design, study, and predict the behavior of synthetic gene expression systems in S. cerevisiae, which were affected by noise. Methods I created probabilistic biochemical reaction models from known behaviors of the tetR and rtTA genes, gene products, and their gene architectures. I then simplified these models to account for essential behaviors of gene expression systems. Finally, I used these models to predict behaviors of modified gene expression systems, which were experimentally verified. Results Cell growth, which is often ignored when formulating chemical kinetics models, was essential for understanding gene expression behavior. Models incorporating growth effects were used to explain unexpected reductions in gene expression noise, design a set of gene expression systems with “linear” dose-responses, and quantify the speed with which cells explored their fitness landscapes due to noisy gene expression. Conclusions Models incorporating noisy gene expression and cell division were necessary to design, understand, and predict the behaviors of synthetic gene expression systems. The methods and models developed here will allow investigators to more efficiently design new gene expression systems, and infer gene expression properties of TetR based systems.
Resumo:
This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”
Resumo:
La diminution des doses administrées ou même la cessation complète d'un traitement chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutrophiles, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, parallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules saines. Dans le but d'atténuer cet impact myélosuppresseur, on administre aux patients un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF), une forme exogène du G-CSF, l'hormone responsable de la stimulation de la production des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bienfaits d'un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien établis, les protocoles d'administration demeurent mal définis et sont fréquemment déterminés ad libitum par les cliniciens. Avec l'optique d'améliorer le dosage thérapeutique et rationaliser l'utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous avons développé un modèle physiologique du processus de granulopoïèse, qui incorpore les connaissances actuelles de pointe relatives à la production des neutrophiles des cellules souches hématopoïétiques dans la moelle osseuse. À ce modèle physiologique, nous avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux médicaments: le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF (filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous avons estimé les paramètres de manière exhaustive sans devoir recourir à l'ajustement des données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où l'administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utilisant ce modèle physio-PK/PD, nous avons démontré que le nombre d'administrations du rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administrations, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans un souci d'applicabilité clinique de notre approche de modélisation, nous avons investigué l'impact de la variabilité PK présente dans une population de patients, sur les prédictions du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments. En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des neutrophiles, la valeur du nadir, ainsi que l'aire sous la courbe concentration-effet, nous avons établi qu'il n'y avait aucune différence significative dans les prédictions du modèle entre le patient-type et la population. Ceci démontre la robustesse de l'approche que nous avons développée et qui s'apparente à une approche de pharmacologie quantitative des systèmes (QSP). Motivés par l'utilisation du rhG-CSF dans le traitement d'autres maladies, comme des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite soumis l'étude du modèle au contexte des maladies dynamiques. En mettant en évidence la non validité du paradigme de la rétroaction des cytokines pour l'administration exogène des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD novateur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l'hypothèse sous-jacente de l'équilibre entre la concentration libre et liée, selon la loi d'action de masse, n'est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la surestimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à reproduire des données cliniques obtenues dans diverses conditions (l'administration exogène du G-CSF, l'administration du PM00104, CHOP14). Nous avons aussi fourni une explication logique des mécanismes responsables de la réponse physiologique aux deux médicaments. Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disciplines scientifiques telles que la paléontologie et la forensique, où une approche semblable a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie quantitative des systèmes appliquées au développement du médicament et à la médecine translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point.
Resumo:
La diminution des doses administrées ou même la cessation complète d'un traitement chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutrophiles, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, parallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules saines. Dans le but d'atténuer cet impact myélosuppresseur, on administre aux patients un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF), une forme exogène du G-CSF, l'hormone responsable de la stimulation de la production des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bienfaits d'un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien établis, les protocoles d'administration demeurent mal définis et sont fréquemment déterminés ad libitum par les cliniciens. Avec l'optique d'améliorer le dosage thérapeutique et rationaliser l'utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous avons développé un modèle physiologique du processus de granulopoïèse, qui incorpore les connaissances actuelles de pointe relatives à la production des neutrophiles des cellules souches hématopoïétiques dans la moelle osseuse. À ce modèle physiologique, nous avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux médicaments: le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF (filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous avons estimé les paramètres de manière exhaustive sans devoir recourir à l'ajustement des données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où l'administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utilisant ce modèle physio-PK/PD, nous avons démontré que le nombre d'administrations du rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administrations, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans un souci d'applicabilité clinique de notre approche de modélisation, nous avons investigué l'impact de la variabilité PK présente dans une population de patients, sur les prédictions du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments. En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des neutrophiles, la valeur du nadir, ainsi que l'aire sous la courbe concentration-effet, nous avons établi qu'il n'y avait aucune différence significative dans les prédictions du modèle entre le patient-type et la population. Ceci démontre la robustesse de l'approche que nous avons développée et qui s'apparente à une approche de pharmacologie quantitative des systèmes (QSP). Motivés par l'utilisation du rhG-CSF dans le traitement d'autres maladies, comme des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite soumis l'étude du modèle au contexte des maladies dynamiques. En mettant en évidence la non validité du paradigme de la rétroaction des cytokines pour l'administration exogène des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD novateur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l'hypothèse sous-jacente de l'équilibre entre la concentration libre et liée, selon la loi d'action de masse, n'est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la surestimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à reproduire des données cliniques obtenues dans diverses conditions (l'administration exogène du G-CSF, l'administration du PM00104, CHOP14). Nous avons aussi fourni une explication logique des mécanismes responsables de la réponse physiologique aux deux médicaments. Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disciplines scientifiques telles que la paléontologie et la forensique, où une approche semblable a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie quantitative des systèmes appliquées au développement du médicament et à la médecine translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point.
Resumo:
This report summarizes the topics and activities of the fourth edition of the annual COMBINE meeting, held in Paris during September 16-20 2013,
Resumo:
Background The purpose of this study was to identify candidate metastasis suppressor genes from a mouse allograft model of prostate cancer (NE-10). This allograft model originally developed metastases by twelve weeks after implantation in male athymic nude mice, but lost the ability to metastasize after a number of in vivo passages. We performed high resolution array comparative genomic hybridization on the metastasizing and non-metastasizing allografts to identify chromosome imbalances that differed between the two groups of tumors. Results This analysis uncovered a deletion on chromosome 2 that differed between the metastasizing and non-metastasizing tumors. Bioinformatics filters were employed to mine this region of the genome for candidate metastasis suppressor genes. Of the 146 known genes that reside within the region of interest on mouse chromosome 2, four candidate metastasis suppressor genes (Slc27a2, Mall, Snrpb, and Rassf2) were identified. Quantitative expression analysis confirmed decreased expression of these genes in the metastasizing compared to non-metastasizing tumors. Conclusion This study presents combined genomics and bioinformatics approaches for identifying potential metastasis suppressor genes. The genes identified here are candidates for further studies to determine their functional role in inhibiting metastases in the NE-10 allograft model and human prostate cancer.
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.