980 resultados para surface moisture
Resumo:
Soil water repellency occurs widely in horticultural and agricultural soils when very dry. The gradual accumulation and breakdown of surface organic matter over time produces wax-like organic acids, which coat soil particles preventing uniform entry of water into the soil. Water repellency is usually managed by regular surfactant applications. Surfactants, literally, are surface active agents (SURFace ACTive AgeNTS). Their mode of action is to reduce the surface tension of water, allowing it to penetrate and wet the soil more easily and completely. This practice improves water use efficiency (by requiring less water to wet the soil and by capturing rainfall and irrigation more effectively and rapidly). It also reduces nutrient losses through run-off erosion or leaching. These nutrients have the potential to pollute the surrounding environment and water courses. This project investigated potential improvements to standard practices (product combination and scheduling) for surfactant use to overcome localised dry spots on water repellent soils and thus improve turf quality and water use efficiency. Weather conditions for the duration of the trial prevented the identification of improved practices in terms of combination and scheduling. However, the findings support previous research that the use of soil surfactants decreased the time for water to infiltrate dry soil samples taken from a previously severely hydrophobic site. Data will be continually collected from this trial site on a private contractual basis, with the hope that improvements to standard practices will be observed during the drier winter months when moisture availability is a limiting factor for turfgrass growth and quality.
Resumo:
In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.
Resumo:
Powders are essential materials in the pharmaceutical industry, being involved in majority of all drug manufacturing. Powder flow and particle size are central particle properties addressed by means of particle engineering. The aim of the thesis was to gain knowledge on powder processing with restricted liquid addition, with a primary focus on particle coating and early granule growth. Furthermore, characterisation of this kind of processes was performed. A thin coating layer of hydroxypropyl methylcellulose was applied on individual particles of ibuprofen in a fluidised bed top-spray process. The polymeric coating improved the flow properties of the powder. The improvement was strongly related to relative humidity, which can be seen as an indicator of a change in surface hydrophilicity caused by the coating. The ibuprofen used in the present study had a d50 of 40 μm and thus belongs to the Geldart group C powders, which can be considered as challenging materials in top-spray coating processes. Ibuprofen was similarly coated using a novel ultrasound-assisted coating method. The results were in line with those obtained from powders coated in the fluidised bed process mentioned above. It was found that the ultrasound-assisted method was capable of coating single particles with a simple and robust setup. Granule growth in a fluidised bed process was inhibited by feeding the liquid in pulses. The results showed that the length of the pulsing cycles is of importance, and can be used to adjust granule growth. Moreover, pulsed liquid feed was found to be of greater significance to granule growth in high inlet air relative humidity. Liquid feed pulsing can thus be used as a tool in particle size targeting in fluidised bed processes and in compensating for changes in relative humidity of the inlet air. The nozzle function of a two-fluid external mixing pneumatic nozzle, typical for small scale pharmaceutical fluidised bed processes, was studied in situ in an ongoing fluidised bed process with particle tracking velocimetry. It was found that the liquid droplets undergo coalescence as they proceed away from the nozzle head. The coalescence was expected to increase droplet speed, which was confirmed in the study. The spray turbulence was studied, and the results showed turbulence caused by the event of atomisation and by the oppositely directed fluidising air. It was concluded that particle tracking velocimetry is a suitable tool for in situ spray characterisation. The light transmission through dense particulate systems was found to carry information on particle size and packing density as expected based on the theory of light scattering by solids. It was possible to differentiate binary blends consisting of components with differences in optical properties. Light transmission showed potential as a rapid, simple and inexpensive tool in characterisation of particulate systems giving information on changes in particle systems, which could be utilised in basic process diagnostics.
Resumo:
The air-exposed surfaces of sintered and are-melted UC samples were examined by XPS and SIMS. XPS results indicate that the surface is covered with a very thin layer of UO2 mixed with free carbon, which would have formed along with the oxide during the reaction between UC and oxygen or moisture. From the SIMS depth profile of oxygen, the thickness of the oxide layer is found to be approximately 10 nm. The SIMS oxygen images of the surface as a function of etching time reveal that the surface of UC consists of a top layer of adsorbed moisture/oxygen; this contamination layer is followed by a layer containing uranium oxide, uranium hydroxide and free carbon and then grain boundary oxide and finally bulk UC. The behaviour of sintered and are-melted samples is similar.
Resumo:
The synthesis of ``smart structured'' conducting polymers and the fabrication of devices using them are important areas of research. However, conducting polymeric materials that are used in devices are susceptible to degradation due to oxygen and moisture. Thus, protection of such devices to ensure long-term stability is always desirable. Polymer nanocomposites are promising materials for the encapsulation of such devices. Therefore, it is important to develop suitable polymer nanocomposites as encapsulation materials to protect such devices. This work presents a technique based on grafting between surface-decorated gamma-alumina nanoparticles and polymer to make nanocomposites that can be used for the encapsulation of devices. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride-terminated polydimethylsiloxane) through a platinum-catalyzed hydrosilylation reaction. Fourier transform infrared spectroscopy, X-ray-photoelectron spectroscopy, and Raman spectroscopy were used to characterize the surface chemistry of the nanoparticles after surface modification. The grafting density of alkene groups on the surface of the modified nanoparticles was calculated using CHN and thermogravimetric analyses. The thermal stability of the composites was also evaluated using thermogravimetric analysis. The nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using a density gradient column, and the morphology of the composites was evaluated by scanning electron microscopy. All of our studies reveal that the composites have good thermal stability and mechanical flexibility and, thus, can potentially be used for the encapsulation of organic photovoltaic devices.
Resumo:
Flexible, nano-composite moisture barrier films of poly(vinyl alcohol-co-ethylene) with surface modified montmorillonite fabricated by solution casting were used to encapsulate organic devices. The composite films were characterized by FTIR, UV-visible spectroscopy and SEM imaging. Thermal and mechanical properties of the composite films were studied by DSC and UTM. Calcium degradation test was used to determine the transmission rate of water vapour through the composite films, which showed a gradual reduction from similar to 0.1 g m(-2) day(-1) to 0.0001 g m(-2) day(-1) with increasing modified montmorillonite loading in the neat copolymer. The increase in moisture barrier performance is attributed to the decreased water vapour diffusivity due to matrix-filler interactions in the composite. The accelerated aging test was carried out for non-encapsulated and encapsulated devices to evaluate the efficiency of the encapsulants. The encapsulated devices exhibited longer lifetimes indicating the efficacy of the encapsulant.
Resumo:
Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.
Resumo:
The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0.06 m(3)/m(3) for the majority of plots. Comparison with the SMOS SM showed a good temporal behaviour with RMSE of approximately 0.05 m(3)/m(3) and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.
Resumo:
A new model accounting for both turbulence and sea state effects has been proposed in this paper to describe momentum, heat and moisture exchanges through air-sea interface. While long wave components mainly change air flow profile, short wave components
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pluvial Lake Estancia in central New Mexico experienced large and rapid fluctuations in surface area and elevation during the build-up to and termination of the last glacial maximum (LGM). Due to continuous groundwater discharge, a minimum pool covering about 400 square kilometers was maintained in the central basin until about 12,000 years ago, ensuring a continuous depositional sequence even during low stands of the lake. ... The sensitive response to fluctuations in climate by several independent proxies at Estancia show that transport of Pacific moisture over western North America changed dramatically during the last Ice Age, perhaps comparable to the large and rapid changes in climate documented from high-latitude ice and North Atlantic marine sediments for the LCM and its transitions.
Resumo:
Sodium polyacrylate was synthesized with acrylic acid as the monomer, and sodium bisulfate and ammonium persulfate as the initiator, by means of aqueous solution polymerization. The factors influencing the properties of moisture absorption, such as monomer concentration, dosage of initiator, and reaction temperature were systematically investigated. The experimental results indicate that the moisture-absorbing property of this polymer was better than other traditional material, such as silica gel, and molecular sieve. The best reaction condition and formula are based on the orthogonal experiment design. The optimum moisture absorbency of sodium polyacrylate reaches 1.01 g/g. The mathematical correlation of this polymer with various factors and moisture absorbency is obtained based on the multiple regression analysis. The moisture content intuitive analysis table shows that neutralization degree has the most significant influence on moisture absorbency, followed by monomer concentration and reaction temperature, while other factors have less influence.