910 resultados para surface effect
Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures
Resumo:
We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ∼18–20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).
Resumo:
Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.
Resumo:
Understanding the interaction of organic molecules with TiO2 surfaces is important for a wide range of technological applications. While density functional theory (DFT) calculations can provide valuable insight about these interactions, traditional DFT approaches with local exchange-correlation functionals suffer from a poor description of non-bonding van der Waals (vdW) interactions. We examine here the contribution of vdW forces to the interaction of small organic molecules (methane, methanol, formic acid and glycine) with the TiO2 (110) surface, based on DFT calculations with the optB88-vdW functional. The adsorption geometries and energies at different configurations were also obtained in the standard generalized gradient approximation (GGA-PBE) for comparison. We find that the optB88-vdW consistently gives shorter surface adsorbate-to-surface distances and slightly stronger interactions than PBE for the weak (physisorbed) modes of adsorption. In the case of strongly adsorbed (chemisorbed) molecules both functionals give similar results for the adsorption geometries, and also similar values of the relative energies between different chemisorption modes for each molecule. In particular both functionals predict that dissociative adsorption is more favourable than molecular adsorption for methanol, formic acid and glycine, in general agreement with experiment. The dissociation energies obtained from both functionals are also very similar, indicating that vdW interactions do not affect the thermodynamics of surface deprotonation. However, the optB88-vdW always predicts stronger adsorption than PBE. The comparison of the methanol adsorption energies with values obtained from a Redhead analysis of temperature programmed desorption data suggests that optB88-vdW significantly overestimates the adsorption strength, although we warn about the uncertainties involved in such comparisons.
Resumo:
We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB– elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9 %) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0 %) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the “no feedback” case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
Resumo:
Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing observation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14 °C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.
Resumo:
The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the selectivity of Well-defined Au and Ag nanostructures as substrates for the SERS, (surface-enhanced Raman scattering) detection of simazine (6-chloro-N,N`-diethyl-1,3,5-triazine-2,4-diamine) and atrazine (6-chloro-N-ethyl-N`-isopropyl-1,3,5-triazine-2,4-diamine). Our data showed that simazine and atrazine displayed similar SERS spectra when the Au was employed as substrate. Conversely, distinct SERS signatures were obtained upon the utilization of Ag substrates. Density functional theory (DFT) calculations and vibrational assignments suggested that, while simazine and atrazine adsorbed on Au via the N3 position of the triazine ring, simazine adsorbed on Ag via N3 and atrazine via N5. The results presented herein demonstrated that the adsorption geometry of analyte molecules can play a central role over substrate selectivity in SERS, which is particularly important in applications involving ultrasensitive analysis of mixtures containing structurally similar molecules.
Resumo:
Two experiments were carried out to study the effect of breeder age on incubation parameters (hatchability, eggshell thickness, egg surface temperature and chick weight). In Exp. 1, fertile eggs (30- and 60-wk-old breeders) were incubated at three different temperatures (36.8, 37.8 and 38.8 ºC). Eggshell surface temperature was measured by attaching a thermocouple to the shell and data were collected in a datalogger every ten minutes. This study was conducted according to a 3 x 2 factorial design (three temperatures and two breeder ages). Data revealed that eggshell surface temperature changed according to incubation temperature, with the main increase occurring between 10 and 13 days of incubation, and that the maximum increase in eggshell surface temperature was not higher than +0.6 ºC, irrespective of incubator temperature. The incubator temperature affected total incubation period and hatchability (%) at 38.8 ºC, independent of breeder age. Heavier eggs resulted in heavier chicks, irrespective of incubator temperature. In Exp 2, the eggs (30- and 60-wk-old breeders) were incubated at 37.8 ºC and eggs characteristics (weight, specific gravity, total hatchability and chicks weight) were evaluated according to a randomized experimental design. The data showed that breeder age affected eggshell thickness and chick weight (heavier eggs resulted in heavier chicks), but not specific gravity, eggshell surface temperature or hatchability. The findings of this study revealed that hatchability can be influenced by incubation temperature, but not by the breeder age. Breeder age can affect eggshell thickness, egg weight and eggshell surface temperature, but not specific gravity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Replantation is an acceptable option for treatment of an avulsed permanent tooth. Nevertheless, an extended extraoral period damages the periodontal ligament and results in external root resorption. The purpose of this study was to assess by histologic and histometric analysis, the influence of propolis 15% (natural resinous substance collected by Apis mellifera bees from various plants) and the fluoride solution used as root surface treatment on the healing process after delayed tooth replantation. Thirty Wistar (Rattus norvegicus albinus) rats were submitted to extraction of their upper right incisor. The teeth were maintained in a dry environment for 60 min. After this, the pulp was extirpated and the papilla, enamel organ and periodontal ligament were removed with scalpel. The teeth were divided into three experimental groups: Group I - teeth immersed in 20 ml of physiologic saline; Group II - teeth immersed in 20 ml of 2% acidulated phosphate sodium fluoride; Group III - teeth immersed in 20 ml of 15% propolis. After 10 min of immersion in the solutions, the root canals were dried and filled with calcium hydroxide paste and the teeth were replanted. The animals were euthanized 60 days after replantation. The results showed that similar external root resorption was seen in the propolis and fluoride groups. Teeth treated with physiologic saline tended to have more inflammatory root resorption compared with those treated with fluoride or propolis. However, the comparative analysis did not reveal statistically significant differences (P > 0.05) between the treatment modalities when used for delayed tooth replantation.
Resumo:
The aim of the study was to verify the influence of surface sealants on the surface roughness of resin composite restorations before and after mechanical toothbrushing, and evaluate the superficial topography using atomic force microscope. Five surface sealers were used: Single Bond, Opti Bond Solo Plus, Fortify, Fortify Plus and control, without any sealer agent. The lowest values of surface roughness were obtained for control, Single Bond and Fortify groups before toothbrushing. Fortify and Fortify Plus were the sealer agents that support the abrasive action caused by the toothbrushing although Fortify Plus group remained with high values of surface roughness. The application of specific surface sealants could be a useful clinical procedure to maintain the quality of resin-based composite restorations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.
Resumo:
The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.