992 resultados para suppressor cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using differential display PCR, we identified a novel gene upregulated in renal cell carcinoma. Characterization of the full-length cDNA and gene revealed that the encoded protein is a human homologue of the Drosophila melanogaster Tweety protein, and so we have termed the novel protein TTYH2. The orthologous mouse cDNA was also identified and the predicted mouse protein is 81% identical to the human protein. The encoded human TTYH2 protein is 534 amino acids and, like the other members of the tweety-related protein family, is a putative cell surface protein with five transmembrane regions. TTYH2 is located at 17q24; it is expressed most highly in brain and testis and at lower levels in heart, ovary, spleen, and peripheral blood leukocytes. Expression of this gene is upregulated in 13 of 16 (81%) renal cell carcinoma samples examined. In addition to a putative role in brain and testis, the overexpression of TTYH2 in renal cell carcinoma suggests that it may have an important role in kidney tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aim: Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. Methods: One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Results: Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P< 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. Conclusions: The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. (C) 2002 Blackwell Publishing Asia Pty Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular mechanisms that determine the response of neural progenitor cells to growth factors and regulate their differentiation into either neurons or astrocytes remain unclear. We found that expression of SOCS2, an intracellular regulator of cytokine signaling, was restricted to mouse progenitor cells and neurons in response to leukemia inhibitory factor (LIF)-like cytokines. Progenitors lacking SOCS2 produced fewer neurons and more astrocytes in vitro, and Socs2(-/-) mice had fewer neurons and neurogenin-1 (Ngn1)-expressing cells in the developing cortex, whereas overexpression of SOCS2 increased neuronal differentiation. We also report that growth hormone inhibited Ngn1 expression and neuronal production, and this action was blocked by SOCS2 overexpression. These findings indicate that SOCS2 promotes neuronal differentiation by blocking growth hormone-mediated downregulation of Ngn1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wilms' tumour suppressor gene (WT1) encodes a zinc finger-containing nuclear protein essential for kidney and urogenital development. Initially considered a transcription factor, there is mounting evidence that WT1 has a role in post-transcriptional processing. Using the interspecies heterokaryon assay, we have demonstrated that WT1 can undergo nucleocytoplasmic shuttling. We have also mapped the region responsible for nuclear export to residues 182-324. Our data add further complexity to the role of WT1 in trancriptional and post-transcriptional regulation. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytokines are important for breast cell function, both as trophic hormones and as mediators of host defense mechanisms against breast cancer. Recently, inducible feedback suppressors of cytokine signalling (SOCS/JAB/SSI) have been identified, which decrease cell sensitivity to cytokines. We examined the expression of SOCS genes in 17 breast carcinomas and 10 breast cancer lines, in comparison with normal tissue and breast lines. We report elevated expression of SOCS-1-3 and CIS immunoreactive proteins within in situ ductal carcinomas and infiltrating ductal carcinomas relative to normal breast tissue. Significantly increased expression of SOCS-1-3 and CIS transcripts was also shown by quantitative in situ hybridisation within both tumour tissue and reactive stroma. CIS transcript expression was elevated in all 10 cancer lines, but not in control lines. However, there was no consistent elevation of other SOCS transcripts. CIS protein was shown by immunoblot to be present in all cancer lines at increased levels, mainly as the 47 kDa ubiquitinylated form. A potential proliferative role for CIS overexpression is supported by reports that CIS activates ERK kinases, and by strong induction in transient reporter assays with an ERK-responsive promoter. The in vivo elevation of SOCS gene expression may be part of the host/tumour response or a response to autocrine/paracrine GH and prolactin. However, increased CIS expression in breast cancer lines appears to be a specific lesion, and could simultaneously shut down STAT 5 signalling by trophic hormones, confer resistance to host cytokines and increase proliferation through ERK kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Febs Journal (2009)276:1776-1786

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada – Biomedicina

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La infección de mamíferos con el T. cruzi resulta en diferentes alteraciones inmunológicas que permiten la persistencia crónica del parásito y destrucción inflamatoria progresiva del tejido cardiaco, nervioso y hepático. Los mecanismos responsables de la patología de la enfermedad de Chagas han sido materia de intensa investigación habiéndose propuesto que el daño producido en esta enfermedad puede ser consecuencia de la respuesta inflamatoria del individuo infectado y/o de una acción directa del parásito sobre los tejidos del hospedador. El propósito del presente proyecto es estudiar comparativamente, en dos cepas de ratones con diferente susceptibilidad a la infección y desarrollo de patología, la participación y los mecanismos efectores de las células supresoras mieloides (CSM) y las celulas T regulatorias inducidas por la infección experimental con Trypanosoma cruzi en el control de la infección con este protozoario y en el desarrollo de la patología hepática siendo los objetivos especificos desarrolar: - Investigar la generación y/o reclutamiento de células de CSM en bazo e hígado de ratones infectados con Trypanosoma cruzi y su contribución a la desigual susceptibilidad a la infección y respuesta inmune desarrollada en las cepas de ratones BALB/c y C57BL/6; - Investigar la capacidad de las CSM inducidas por la infección con T. cruzi en bazo e hígado de ratones de ambas cepas para suprimir la respuesta de células T in vitro e indagar sobre los mecanismos de supresión utilizados; - Investigar la generación y/o reclutamiento de células Treg durante la infección experimental con Trypanosoma cruzi, su participación en la desigual susceptibilidad a la infección y respuesta inmune desarrollada en ambas cepas de ratones y los mecanismos de supresión utilizados. - Analizar en tejido hepático o leucocitos infiltrantes la presencia de COX2, PGE2, MMP2 y 9, IL1b, IL6, IDO, IL10 y GM-CSF capaces de inducir la expansión de las CSM; - Dilucidar si la administración del ligando para TLR2 (Pam3CyS) previo a la infección de ratones C57BL/6 (en los cuales se detecta un menor número de CSM) es capaz de modular la respuesta inflamatoria y el daño hepático a través de la inducción de CSM y/o T reg en hígado y bazo. La comprension de los eventos celulares y moleculares que regulan la producción de citoquinas pro- y anti-inflamatorias y otros mediadores, así como el papel de los receptores de la inmunidad innata durante la infección con T. cruzi contribuirá a responder interrogantes que son claves para el diseño de nuevas estrategias de intervención inmune tendientes a preservar los mecanismos de defensa del huésped. Two nonexclusive mechanisms have been proposed to explain the Chagas’s disease pathology: 1) The pathology of the disease seems to be consequence of the inflammatory response triggered for the parasite; or 2) The damage is produced by the parasite direct effect. Recently, we reported that TLR2, TLR4 and TLR9 (innate immune response receptors) are differentially modulated in injured livers from BALB/c (lesser liver pathology) and C57BL/6 (elevated liver pathology) mice during Trypanosoma cruzi infection. The aim of our proposal is the study of role of Myeloid-Derived Suppressor Cells (MDSC) and regulatory T cells in the control of T. cruzi infection and the infection-associated pathology. Our specific aims are: -To study the induction or recruitment of MDSC in splenn and liver of BALB/c and C57BL/6 mice and their relationship with the differential susceptibility and immune response observed in these both mice strains; - To determine the ability and the mechanisms used by the T. cruzi-induced MDSC to suppress the T cell proliferative response; -To study the induction or recruitment of Treg in liver of BALB/c and C57BL/6 mice and their relationship with the differential susceptibility and immune response observed in these both mice strains; -To analize in liver tissue or tissue infiltrating lymphocytes the activation of COX2, PGE2, MMP2 y 9, IL1b, IL6, IDO, IL10 y GM-CSF known to promote the development of MDSC; -To determine whether the treatment with Pam3CyS (TLR2 ligand) is able to modulate the liver inflammatory respose and damage througth the induction of MDSC or Treg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The course of human Leishmania chagasi infections appears to be determined by the balance between type 1 (T1) CD4+ and CD8+ T suppressor (Ts) cell activities. Skin test positive adults living in hyperendemic areas who have no history of visceral leishmaniasis (VL) have T1 CD4+ T cell immunodominant responses against L. chagasi. The cytokines they secrete during anti-leishmania responses are a probable source of cytokines which inhibit the CD8+ Ts cells associated with VL. The ability of supernatants generated from peripheral blood mononuclear cells derived from skin test positive adults to reverse immune responses which appear to be mediated by CD8+ Ts cells was assessed in three sets of screening assays. The supernatants displayed three candidate factors. One, which could be explained by Leishmania antigens in the supernatant, decreased high endogenous IL-10 secretion characteristic of one class of VL patients. A second activity decreased high endogenous proliferation characteristic of the same class of patients without decreasing antigen specific proliferation. The third activity inhibited or killed CD8+ T cells but not CD4+ T cells. These activities might be useful in treating VL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.