980 resultados para subtropical climate
Resumo:
Active tufas in the form of waterfalls and dams occur along drainage channels in the Serra do Andre Lopes region (State of Sao Paulo, southeastern Brazil) and are associated with the karst system that developed on a dolomitic plateau with a superhumid subtropical climate. The predominance of autogenic waters enables the groundwater to become enriched in calcium carbonate, with low terrigenous sediment content. The tufas that were studied are composed of calcite and have high calcium contents and low magnesium contents. Eroded tufa beds that originate from changes in the position of fluvial channels or river flow rates also occur in this region. In the Sapatu deposit, phytohermal tufas with complex morphologies are arranged in levels constituting various temporally repeated sequences that were deposited between 10,570 and 4,972 cal years BP. In the Frias deposit, distal fluvial deposits of tufa are massive with a relatively greater quantity of terrigenous material and show evidence of dissolution and reprecipitation. The base of this deposit is composed of a cemented breccia dated at 25,390 years BP, which is younger than the overlying tufas ([42,000 years BP). In the two deposits, the levels of terrigenous sediments (quartz sand and lithic pebbles) and terrestrial gastropod shells are interpreted as phases of increased flow rate of rivers during intervals of higher rainfall.
Resumo:
L’infezione da virus dell’ epatite E (HEV) nei suini e nell’uomo è stata segnalata in diversi Paesi. Nei suini, il virus causa infezioni asintomatiche, mentre nell’uomo è responsabile di epidemie di epatite ad andamento acuto nei Paesi a clima tropicale o subtropicale con condizioni igieniche scadenti, di casi sporadici in quelli sviluppati. HEV è stato isolato anche in diversi animali e l’analisi nucleotidica degli isolati virali di origine animale ha mostrato un elevato grado di omologia con i ceppi di HEV umani isolati nelle stesse aree geografiche, avvalorando l’ipotesi che l'infezione da HEV sia una zoonosi. In America del Sud HEV suino è stato isolato per la prima volta in suini argentini nel 2006, mentre solo dal 1998 esistono dati sull’ infezione da HEV nell’uomo in Bolivia. In questa indagine è stato eseguito uno studio di sieroprevalenza in due comunità rurali boliviane e i risultati sono stati confrontati con quelli dello studio di sieroprevalenza sopra menzionato condotto in altre zone rurali della Bolivia. Inoltre, mediante Nested RT-PCR, è stata verificata la presenza di HEV nella popolazione umana e suina. La sieroprevalenza per anticorpi IgG anti-HEV è risultata pari al 6,2%, molto simile a quella evidenziata nello studio precedente. La prevalenza maggiore (24%) si è osservata nei soggetti di età compresa tra 41 e 50 anni, confermando che l’ infezione da HEV è maggiore fra i giovani-adulti. La ricerca di anticorpi anti HEV di classe IgM eseguita su 52 sieri ha fornito 4 risultati positivi. Il genoma virale è stato identificato in uno dei 22 pool di feci umane e l'esame virologico di 30 campioni individuali fecali e 7 individuali di siero ha fornito rispettivamente risultati positivi in 4/30 e 1/7. La Nested RT-PCR eseguita sui 22 pool di feci suine ha dato esito positivo in 7 pool. L’analisi delle sequenze genomiche di tutti gli amplificati ha consentito di stabilire che gli isolati umani appartenevano allo stesso genotipo III di quelli suini e presentavano con questi una elevata omologia aminoacidica (92%).
Resumo:
El objetivo principal de la presente tesis es la búsqueda de nuevos registros palinológicos para las formaciones del Grupo Salta, especialmente para aquellas que cuentan con poco o ningún registro de palinomorfos, tales como las Formaciones La Yesera, Las Curtiembres, Yacoraite y Olmedo. Los resultados palinológicos permitieron evaluar algunos aspectos geológicos como las relaciones estratigráficas, edad y ambientes de depósito. El muestreo se centró principalmente en el período comprendido entre el Neocomiano y Daniano, correspondiente a los subgrupos con mayor escasez de datos (Pirgua y Balbuena). 157 muestras palinológicas de la Cuenca del Grupo Salta y áreas relacionadas se trataron en laboratorio, 31 resultaron fértiles. Se brindan los primeros registros palinológicos de la Formación La Yesera (localidad valle de Pucará) que consisten en 35 especies. Las inferencias aleoambientales obtenidas a partir de la palinoflora apoyan las conclusiones que provienen de los datos sedimentológicos: presencia de un lago perenne al momento de la depositación del Miembro Brealito y sequías estacionales cuando se acumuló el Miembro Don Bartolo. La palinoflora indica un clima subtropical con presencia de cierta aridez. A partir de los rangos estratigráficos de algunas especies y de las dataciones radimétricas del Basalto de Isonza, se estima una edad entre el Albiano y el Cenomaniano. Para la Formación Las Curtiembres (Miembro Morales) se describen 19 especies provenientes de la quebrada de Palo Seco, que constituyen la primer asociación palinológica registrada. El predominio de Ephedraceae y Cheirolepidiaceae, junto a la escasa representación de pteridofitas, sugieren condiciones ambientales de aridez a semiaridez, en coincidencia con la sedimentología que indica que la sección superior del Miembro Morales es transicional con las capas rojas de la parte superior de la Formación Las Curtiembres. La asociación palinológica contiene representantes de amplia distribución espacial y temporal. Es relevante la presencia de Peninsulapollis gillii que indica una edad no mayor al Campaniano para la asociación estudiada. Sólo una muestra de la Formación Yacoraite en la localidad de Tres Cruces fue productiva en cuanto al contenido de palinomorfos. La asociación consta solamente de los géneros Leiosphaeridia y Pediastrum que se asocian a condiciones de agua dulce o mixtas. Para la Formación Olmedo se registran 34 especies de palinomorfos y 39 especies para la Formación Tunal (localidades de Garabatal y El Chorro respectivamente). Ambas formaciones comparten un 49 % de taxa. El marcado predominio de algas clorococales indica condiciones lacustres y un ambiente palustre se infiere por la presencia de Pandaniidites texus y Mtchedlishvilia saltenia. El elevado porcentaje de Verrustephanoporites simplex indica que la selva de ulmáceas, era la unidad fitogeográfica más ampliamente distribuida, comparable con la actual Selva de Transición de la Provincia de Yungas. La coincidencia de facies y contenido palinológico indicarían similares condiciones ambientales para las Formaciones Olmedo y Tunal. Mtchedlishvilia saltenia permiten circunscribir las Formaciones al Daniano. Los cambios climáticos acontecidos durante el desarrollo de la Cuenca del Grupo Salta quedaron evidenciados en la palinoflora. Durante el Cretácico Tardío, habrían prevalecido condiciones de aridez y a partir del Maastrichtiano, el clima se torna más húmedo. Las asociaciones del Daniano se caracterizan por una palinoflora de clima subtropical húmedo. Entre el Paleoceno Superior y hasta el Eoceno Inferior, continúa el registro de la flora de clima subtropical pero con una leve disminución en la humedad. Las especies Peninsulapollis gillii, Rhoipites sp. A, Rousea patagonica, Spinitricolpites jennerclarkei, Verrustephanoporites simplex y Azolla sp., pasan el límite Cretácio-Paleógeno registrándose en sedimentos pre- y post-danianos. Se requieren mayores estudios de detalle en aquellos niveles donde está contenido el límite para esclarecer los posibles cambios vegetacionales que hayan ocurrido.
Resumo:
Neogene basins are widespread in Turkey and contain important lignite deposits. In this study, we reconstruct quantitatively the Late Oligocene-Miocene climate evolution in western and central Anatolia by applying the Coexistence Approach to the palynoflora. The obtained results are compared with the data derived from the published and ongoing studies in western and central Anatolia palynofloras by application of the Coexistence Approach. The Coexistence Approach results show that the sedimentation mainly developed on terrestrial environment under the warm subtropical climatic conditions and marine influence during the Chattian and Aquitanian period in western Anatolia (16.5-21.3°C of mean annual temperature (MAT) and 5.5-13.3°C of mean temperature of coldest month (CMT)). After the regression of the sea during the Burdigalian period, the vegetation developed under the terrestrial conditions, which had started in the Burdigalian time in western and central Anatolia and continued in the early-middle Serravallian period. Warm subtropical climate is suggested during the Chattian and Aquitanian period in western Anatolia and becomes cooler in subtropical conditions because of decreasing of the P/A-ratio during the latest Burdigalian-Langhian. The climate was subtropical in western and central Anatolia during the Early-Late Serravalian due to the increasing of the subtropical elements (17.2 to 20.8°C of MAT and 9.6 to13.1°C of CMT). Besides, decreasing of the CMT and MAT values in western and central Anatolia supports the latest Chattian-earliest Aquitanian warming and middle Miocene climatic optimum that is also globally observed. Warm temperate climatic conditions are observed in the Late Miocene. During the early-middle Tortonian, the values are 15.6 to 20.8°C for the MAT, 5.5 to 13.3°C for the CMT and 823 and 1520 mm for the mean annual precipitation (MAP). They had also dry seasons due to lower boundary of MAP lying at 823mm during the middle-Late Tortonian. The palaeotopography of central Anatolia was higher when compared to that of western Anatolia because dominance of the mountain forests was present during the Middle-Late Miocene in central Anatolia. This study provides the first quantitative model for Late Oligocene-Miocene palaeoclimatic evolution in western and central Anatolia.
Resumo:
The reconstruction of the climatic history during the past several hundred years requires a sufficient geographical coverage of combined climate proxy series. Especially in order to identify causal connections between the atmosphere and the ocean, inclusion of marine records into composite climate time series is of fundamental importance. We present two skeletal delta18O chronologies of coral skeletons of Diploria labyrinthiformis from Bermuda fore-reef sites covering periods in the nineteenth and twentieth centuries and compare them with instrumental temperature data. Both time series are demonstrated to display sea-surface temperature (SST) variability on inter-annual to decadal time scales. On the basis of a specific modern delta18O vs instrumental SST calibration we reconstruct a time series of SST anomalies between AD 1350 and 1630 covering periods during the Little Ice Age. The application of the coral delta18O vs temperature relationship leads to estimates of past SST variability which are comparable to the magnitude of modern variations. Parallel to delta18O chronologies we present time series of skeletal bulk density. Coral delta18O and skeletal density reveal a strong similarity during Little Ice Age, confirming the reliability of both proxy climate indicators. The past coral records, presented in this study, share features with a previously published climate proxy record from Bermuda and a composite time series of reconstructed Northern Hemisphere summer temperatures. The coral proxy data presented here represent a valuable contribution to elucidate northern Atlantic subtropical climate variation during the past several centuries.
Resumo:
This thesis argues that forces of literary regionalism and postmodern culture are behind the explosion of crime fiction being written in and about South Florida by a growing number of resident authors. Research included four methods of investigation: 1. A critical reading of many of the novels that make up the sub-genre. 2. A study of the theories of regionalism, postmodernism and the genre of the crime fiction. 3. Interviews with a number of the authors and a prominent Miami book seller. 4. Sociological studies of Miami in terms of historical events and their cultural significance. Today's South Florida crime fiction authors cast their narratives in the old genre of the detective novel where characters are delineated according to traditional definitions of good and evil. Evil characters threaten established order. What makes South Florida crime fiction different from traditional detective fiction is its interest in the exotic, postmodern culture and setting of South Florida. Like the region, the villains are exotic and the order that they threaten is postmodern. There is less of an interest in attributing a larger social meaning to the heroes. Rather, there is an ontological interest in the playing out of good against evil in an almost mythical setting that magnifies economic, environmental and racial issues. There is a unique cultural diversity of the city due to the geographical location of Miami in relationship to Latin America and the Caribbean, and the political forces at work in the region. South Florida's subtropical climate, fragile ecosystem, and elements of frontier life in a cosmopolitan city work to support Miami crime fiction. The setting personifies the unpredictability and pastiche of a postmodern world and may call for a new definition for literature that relies on non-traditional regional characteristics.
Resumo:
This thesis focuses on improving the simulation skills and the theoretical understanding of the subtropical low cloud response to climate change.
First, an energetically consistent forcing framework is designed and implemented for the large eddy simulation (LES) of the low-cloud response to climate change. The three representative current-day subtropical low cloud regimes of cumulus (Cu), cumulus-over-stratocumulus, and stratocumulus (Sc) are all well simulated with this framework, and results are comparable to the conventional fixed-SST approach. However, the cumulus response to climate warming subject to energetic constraints differs significantly from the conventional approach with fixed SST. Under the energetic constraint, the subtropics warm less than the tropics, since longwave (LW) cooling is more efficient with the drier subtropical free troposphere. The surface latent heat flux (LHF) also increases only weakly subject to the surface energetic constraint. Both factors contribute to an increased estimated inversion strength (EIS), and decreased inversion height. The decreased Cu-depth contributes to a decrease of liquid water path (LWP) and weak positive cloud feedback. The conventional fixed-SST approach instead simulates a strong increase in LHF and deepening of the Cu layer, leading to a weakly negative cloud feedback. This illustrates the importance of energetic constraints to the simulation and understanding of the sign and magnitude of low-cloud feedback.
Second, an extended eddy-diffusivity mass-flux (EDMF) closure for the unified representation of sub-grid scale (SGS) turbulence and convection processes in general circulation models (GCM) is presented. The inclusion of prognostic terms and the elimination of the infinitesimal updraft fraction assumption makes it more flexible for implementation in models across different scales. This framework can be consistently extended to formulate multiple updrafts and downdrafts, as well as variances and covariances. It has been verified with LES in different boundary layer regimes in the current climate, and further development and implementation of this closure may help to improve our simulation skills and understanding of low-cloud feedback through GCMs.
Resumo:
IEECAS SKLLQG
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
Lake Annie is a small (37 ha), relatively deep (21 m) sinkhole lake on the Lake Wales Ridge (LWR) of central Florida with a long history of study, including monthly limnological monitoring since June, 1983. The record shows high variability in Secchi disc transparency, which ranged from < 1 to 15 m with a trend toward decreasing values over the latter decade of record. We examined available regional meteorological, groundwater and limnological data to determine the drivers and thermal consequences of variability in water transparency. While total nutrient concentrations and chlorophyll-a were highest during years of low transparency, stepwise regression showed that none of these had a signifi cant effect on transparency after water color was taken into account. Repeated years of high precipitation between 1993–2005 caused an increase in water table height, increasing the transport of dissolved substances from the vegetated watershed into the lake. Groundwater stage explained 73 % of the interannual variability in water transparency. Transparency, in turn, explained 85 % of the interannual variability in the heat budget for the lake, which ranged from 1.8 × 108 to 4.1 × 108 Joules m–2 yr–1, encompassing the range reported across Florida lakes. While surface water temperature was not affected by transparency, depths below 5 m warmed faster during the stratifi ed period during years having a lower rate of light extinction. We show that an increase in precipitation of 20 cm per year reduces the depth of the summer euphotic zone and thermocline by 1.9 and 1.6 m, respectively, and causes a 1-month reduction in the duration of winter mixing in this monomictic lake. Because biota have been shown to respond to shifts in light and heat distribution of much smaller magnitude than exhibited here, our work suggests that subtle changes in precipitation linked to climate fl uctuations may have signifi cant physical as well as biotic consequences.
Resumo:
Synchronous interannual variability in water transparency observed in neighboring lakes has been linked to regional precipitation and resultant runoff of dissolved organic material, but many climate forcings oscillate over time scales longer than most limnological records can detect. A strong relationship (R2 5 0.86) between transparency and the previous two years’ rainfall and lake stage in a 25-yr record from a Florida lake enabled us to hindcast transparency from a longer 75-yr record of rainfall and lake stage. Predictions revealed a ,30-yr cycle in transparency linked to the Atlantic Multidecadal Oscillation (AMO). Transparency was greatest (4–8 m) in the cool phase of the AMO (,1962–1993) associated with below-average rainfall in south Florida and lowest (0.1– 3.0 m) during two warm phases (,1932–1961, 1994–present) associated with above-average, but more variable, annual rainfall. Models that predict effects of large-scale hydrologic restoration projects on solute export from South Florida’s expansive wetlands need to account for recent entry into a warm AMO phase, where teleconnections between the AMO phases and runoff are opposite of those shown for the U.S. interior.
Resumo:
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.
Resumo:
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.
Resumo:
Purpose Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40 years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils. Material and methods Soil samples were collected at depths of 0?0.20 and 0.20?0.40 m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2 mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns. Results and discussion Grape production reduced the organic matter content by 28% and the clay content by 23% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79 %) was higher than vermiculite (21 %). Whereas, in the soil used for grape production during 40 years, the formation of vermiculite was promoted. Conclusions Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure. Recommendations and perspectives Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.