946 resultados para stromal reorganization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the diagnostic features, clinical management and the issues associated with management of a young immunocompetent male who presented with a presumed left Herpes simplex immune stromal keratitis, and ten months later, a right immune stromal keratitis associated with Herpes zoster ophthalmicus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a degenerative disease characterized by fibrosis following failed epithelial repair. Mesenchymal stromal cells (MSC), a key component of the stem cell niche in bone marrow and possibly other organs including lung, have been shown to enhance epithelial repair and are effective in preclinical models of inflammation-induced pulmonary fibrosis, but may be profibrotic in some circumstances. METHODS: In this single centre, non-randomized, dose escalation phase 1b trial, patients with moderately severe IPF (diffusing capacity for carbon monoxide (DLCO ) ≥ 25% and forced vital capacity (FVC) ≥ 50%) received either 1 × 10(6) (n = 4) or 2 × 10(6) (n = 4) unrelated-donor, placenta-derived MSC/kg via a peripheral vein and were followed for 6 months with lung function (FVC and DLCO ), 6-min walk distance (6MWD) and computed tomography (CT) chest. RESULTS: Eight patients (4 female, aged 63.5 (57-75) years) with median (interquartile range) FVC 60 (52.5-74.5)% and DLCO 34.5 (29.5-40)% predicted were treated. Both dose schedules were well tolerated with only minor and transient acute adverse effects. MSC infusion was associated with a transient (1% (0-2%)) fall in SaO2 after 15 min, but no changes in haemodynamics. At 6 months FVC, DLCO , 6MWD and CT fibrosis score were unchanged compared with baseline. There was no evidence of worsening fibrosis. CONCLUSIONS: Intravenous MSC administration is feasible and has a good short-term safety profile in patients with moderately severe IPF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placenta is a readily accessible translationally advantageous source of mesenchymal stem/stromal cells (MSCs) currently used in cryobanking and clinical trials. MSCs cultured from human chorion have been widely assumed to be fetal in origin, despite evidence that placental MSCs may be contaminated with maternal cells, resulting in entirely maternally derived MSC cultures. To document the frequency and determinants of maternal cell contamination in chorionic MSCs, we undertook a PRISMA-compliant systematic review of publications in the PubMed, Medline, and Embase databases (January 2000 to July 2013) on placental and/or chorionic MSCs from uncomplicated pregnancies. Of 147 studies, only 26 (18%) investigated fetal and/or maternal cell origin. After excluding studies that did not satisfy minimal MSC criteria, 7 of 15 informative studies documented MSC cultures as entirely fetal, a further 7 studies reported cultured human chorionic MSC populations to be either maternal (n=6) or mixed (n=1), whereas 1 study separately cultured pure fetal and pure maternal MSC from the same placenta. Maternal cell contamination was associated with term and chorionic membrane samples and greater passage number but was still present in 30% of studies of chorionic villous MSCs. Although most studies assume fetal origin for MSCs sourced from chorion, this systematic review documents a high incidence of maternal-origin MSC populations in placental MSC cultures. Given that fetal MSCs have more primitive properties than adult MSCs, our findings have implications for clinical trials in which knowledge of donor and tissue source is pivotal. We recommend sensitive methods to quantitate the source and purity of placental MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.