926 resultados para stressenergy tensor
Resumo:
Objetivo: Avaliar a correlação dos parâmetros do tensor de difusão com o escore de Loes e se os parâmetros do tensor de difusão poderiam indicar alterações estruturais precoces. Materiais e Métodos: As medidas do tensor de difusão foram obtidas em 30 exames de 14 pacientes com adrenoleucodistrofia ligada ao X e foram correlacionadas com o escore de Loes. Um grupo controle de 28 pacientes masculinos foi avaliado para estabelecer medidas do tensor de difusão pareadas por idade. Análises estatísticas intra e interobservador foram feitas. Resultados: As medidas do tensor de difusão apresentam forte correlação com o escore de Loes segundo o coeficiente de Pearson (r), com valores de –0,86, 0,89, 0,89 e 0,84 para a fração de anisotropia e difusibilidades média, radial e axial (p < 0,01). A análise da mudança nas medidas do tensor de difusão no estágio inicial da doença indica que os valores de difusibilidades média e radial podem ajudar a predizer a progressão da doença. Conclusão: As medidas de parâmetros do tensor de difusão poderiam ser usadas como um adjunto ao escore de Loes, auxiliando no monitoramento da doença e alertando uma possível progressão do escore de Loes na faixa de interesse para decisões terapêuticas.
Resumo:
OBJETIVO: Relatar a experiência com a utilização do retalho musculocutâneo do tensor da fáscia lata (TFL em diferentes situações clínicas, evidenciando suas diversas aplicações, analisando e discutindo as indicações, resultados e complicações. MÉTODO: Entre janeiro de 2003 e dezembro de 2005 dezessete retalhos miocutâneos do TFL foram realizados para cobertura cutânea em uma variedade de defeitos em quinze pacientes.Durante o ato operatório a equipe optou pelo posicionamento do paciente em decúbito lateral em oposição ao lado da lesão a ser reparada. RESULTADOS: Houve sucesso com cobertura cutânea adequada em todos os casos. Em quatro destes ocorreu necessidade de enxerto de pele parcial na área doadora. Em dois casos houve isquemia distal do retalho e em um aconteceu pequena deiscência de sutura em zona doadora. CONCLUSÃO: O retalho miocutâneo do tensor da fáscia lata, portanto, possibilita uma excelente cobertura cutânea para tratamento de defeitos em diversos segmentos anatômicos com pouca morbidade em área doadora.
Resumo:
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.
Resumo:
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
Diffusion Tensor Imaging (DTI) is a new magnetic resonance imaging modality capable of producing quantitative maps of microscopic natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. This technique has become a powerful tool in the investigation of brain structure and function because it allows for in vivo measurements of white matter fiber orientation. The application of DTI in clinical practice requires specialized processing and visualization techniques to extract and represent acquired information in a comprehensible manner. Tracking techniques are used to infer patterns of continuity in the brain by following in a step-wise mode the path of a set of particles dropped into a vector field. In this way, white matter fiber maps can be obtained.
Resumo:
We study complete continuity properties of operators onto ℓ2 and prove several results in the Dunford–Pettis theory of JB∗-triples and their projective tensor products, culminating in characterisations of the alternative Dunford–Pettis property for where E and F are JB∗-triples.
Resumo:
The current study aims to assess the applicability of direct or indirect normalization for the analysis of fractional anisotropy (FA) maps in the context of diffusion-weighted images (DWIs) contaminated by ghosting artifacts. We found that FA maps acquired by direct normalization showed generally higher anisotropy than indirect normalization, and the disparities were aggravated by the presence of ghosting artifacts in DWIs. The voxel-wise statistical comparisons demonstrated that indirect normalization reduced the influence of artifacts and enhanced the sensitivity of detecting anisotropy differences between groups. This suggested that images contaminated with ghosting artifacts can be sensibly analyzed using indirect normalization.
Resumo:
In a development from material introduced in recent work, we discuss the interconnections between ternary rings of operators (TROs) and right C*-algebras generated by JC*-triples, deducing that every JC*-triple possesses a largest universally reversible ideal, that the universal TRO commutes with appropriate tensor products and establishing a reversibility criterion for type I JW*-triples.
Resumo:
An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.
Resumo:
We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.
Resumo:
The nuclear time-dependent Hartree-Fock model formulated in three-dimensional space, based on the full standard Skyrme energy density functional complemented with the tensor force, is presented. Full self-consistency is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit, ranging from spherical nuclei (16O and 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si, 178Os, 190W and 238U). Particular attention is paid to the spin-dependent terms from the central sector of the functional, recently included together with the tensor. They turn out to be capable of producing a qualitative change on the strength distribution in this channel. The effect on the deformation properties is also discussed. The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected. Calculations are compared to predictions from the (quasi)-particle random-phase approximation and experimental data where available, finding good agreement
Resumo:
The role of the tensor terms in the Skyrme interaction is studied for their effect in dynamic calculations where non-zero contributions to the mean-field may arise, even when the starting nucleus, or nuclei are even-even and have no active time-odd potentials in the ground state. We study collisions in the test-bed 16O-16O system, and give a qualitative analysis of the behaviour of the time-odd tensor-kinetic density, which only appears in the mean field Hamiltonian in the presence of the tensor force. We find an axial excitation of this density is induced by a collision.