984 resultados para stochastic simulation
Resumo:
The work is to make a brief discussion of methods to estimate the parameters of the Generalized Pareto distribution (GPD). Being addressed the following techniques: Moments (moments), Maximum Likelihood (MLE), Biased Probability Weighted Moments (PWMB), Unbiased Probability Weighted Moments (PWMU), Mean Power Density Divergence (MDPD), Median (MED), Pickands (PICKANDS), Maximum Penalized Likelihood (MPLE), Maximum Goodness-of-fit (MGF) and the Maximum Entropy (POME) technique, the focus of this manuscript. By way of illustration adjustments were made for the Generalized Pareto distribution, for a sequence of earthquakes intraplacas which occurred in the city of João Câmara in the northeastern region of Brazil, which was monitored continuously for two years (1987 and 1988). It was found that the MLE and POME were the most efficient methods, giving them basically mean squared errors. Based on the threshold of 1.5 degrees was estimated the seismic risk for the city, and estimated the level of return to earthquakes of intensity 1.5°, 2.0°, 2.5°, 3.0° and the most intense earthquake never registered in the city, which occurred in November 1986 with magnitude of about 5.2º
Resumo:
The aim of this work was to describe the methodological procedures that were mandatory to develop a 3D digital imaging of the external and internal geometry of the analogue outcrops from reservoirs and to build a Virtual Outcrop Model (VOM). The imaging process of the external geometry was acquired by using the Laser Scanner, the Geodesic GPS and the Total Station procedures. On the other hand, the imaging of the internal geometry was evaluated by GPR (Ground Penetrating Radar).The produced VOMs were adapted with much more detailed data with addition of the geological data and the gamma ray and permeability profiles. As a model for the use of the methodological procedures used on this work, the adapted VOM, two outcrops, located at the east part of the Parnaiba Basin, were selected. On the first one, rocks from the aeolian deposit of the Piaui Formation (Neo-carboniferous) and tidal flat deposits from the Pedra de Fogo Formation (Permian), which arises in a large outcrops located between Floriano and Teresina (Piauí), are present. The second area, located at the National Park of Sete Cidades, also at the Piauí, presents rocks from the Cabeças Formation deposited in fluvial-deltaic systems during the Late Devonian. From the data of the adapted VOMs it was possible to identify lines, surfaces and 3D geometry, and therefore, quantify the geometry of interest. Among the found parameterization values, a table containing the thickness and width, obtained in canal and lobes deposits at the outcrop Paredão and Biblioteca were the more relevant ones. In fact, this table can be used as an input for stochastic simulation of reservoirs. An example of the direct use of such table and their predicted radargrams was the identification of the bounding surface at the aeolian sites from the Piauí Formation. In spite of such radargrams supply only bi-dimensional data, the acquired lines followed of a mesh profile were used to add a third dimension to the imaging of the internal geometry. This phenomenon appears to be valid for all studied outcrops. As a conclusion, the tool here presented can became a new methodology in which the advantages of the digital imaging acquired from the Laser Scanner (precision, accuracy and speed of acquisition) were combined with the Total Station procedure (precision) using the classical digital photomosaic technique
Resumo:
We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
OBJECTIVES Mortality in patients starting antiretroviral therapy (ART) is higher in Malawi and Zambia than in South Africa. We examined whether different monitoring of ART (viral load [VL] in South Africa and CD4 count in Malawi and Zambia) could explain this mortality difference. DESIGN Mathematical modelling study based on data from ART programmes. METHODS We used a stochastic simulation model to study the effect of VL monitoring on mortality over 5 years. In baseline scenario A all parameters were identical between strategies except for more timely and complete detection of treatment failure with VL monitoring. Additional scenarios introduced delays in switching to second-line ART (scenario B) or higher virologic failure rates (due to worse adherence) when monitoring was based on CD4 counts only (scenario C). Results are presented as relative risks (RR) with 95% prediction intervals and percent of observed mortality difference explained. RESULTS RRs comparing VL with CD4 cell count monitoring were 0.94 (0.74-1.03) in scenario A, 0.94 (0.77-1.02) with delayed switching (scenario B) and 0.80 (0.44-1.07) when assuming a 3-times higher rate of failure (scenario C). The observed mortality at 3 years was 10.9% in Malawi and Zambia and 8.6% in South Africa (absolute difference 2.3%). The percentage of the mortality difference explained by VL monitoring ranged from 4% (scenario A) to 32% (scenarios B and C combined, assuming a 3-times higher failure rate). Eleven percent was explained by non-HIV related mortality. CONCLUSIONS VL monitoring reduces mortality moderately when assuming improved adherence and decreased failure rates.
Resumo:
The study assessed the economic efficiency of different strategies for the control of post-weaning multi-systemic wasting syndrome (PMWS) and porcine circovirus type 2 subclinical infection (PCV2SI), which have a major economic impact on the pig farming industry worldwide. The control strategies investigated consisted on the combination of up to 5 different control measures. The control measures considered were: (1) PCV2 vaccination of piglets (vac); (2) ensuring age adjusted diet for growers (diets); (3) reduction of stocking density (stock); (4) improvement of biosecurity measures (bios); and (5) total depopulation and repopulation of the farm for the elimination of other major pathogens (DPRP). A model was developed to simulate 5 years production of a pig farm with a 3-weekly batch system and with 100 sows. A PMWS/PCV2SI disease and economic model, based on PMWS severity scores, was linked to the production model in order to assess disease losses. This PMWS severity scores depends on the combination post-weaning mortality, PMWS morbidity in younger pigs and proportion of PCV2 infected pigs observed on farms. The economic analysis investigated eleven different farm scenarios, depending on the number of risk factors present before the intervention. For each strategy, an investment appraisal assessed the extra costs and benefits of reducing a given PMWS severity score to the average score of a slightly affected farm. The net present value obtained for each strategy was then multiplied by the corresponding probability of success to obtain an expected value. A stochastic simulation was performed to account for uncertainty and variability. For moderately affected farms PCV2 vaccination alone was the most cost-efficient strategy, but for highly affected farms it was either PCV2 vaccination alone or in combination with biosecurity measures, with the marginal profitability between 'vac' and 'vac+bios' being small. Other strategies such as 'diets', 'vac+diets' and 'bios+diets' were frequently identified as the second or third best strategy. The mean expected values of the best strategy for a moderately and a highly affected farm were £14,739 and £57,648 after 5 years, respectively. This is the first study to compare economic efficiency of control strategies for PMWS and PCV2SI. The results demonstrate the economic value of PCV2 vaccination, and highlight that on highly affected farms biosecurity measures are required to achieve optimal profitability. The model developed has potential as a farm-level decision support tool for the control of this economically important syndrome.
Resumo:
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.
Resumo:
Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution.
Resumo:
The Agent-Based Modelling and simulation (ABM) is a rather new approach for studying complex systems withinteracting autonomous agents that has lately undergone great growth in various fields such as biology, physics, social science, economics and business. Efforts to model and simulate the highly complex cement hydration process have been made over the past 40 years, with the aim of predicting the performance of concrete and designing innovative and enhanced cementitious materials. The ABM presented here - based on previous work - focuses on the early stages of cement hydration by modelling the physical-chemical processes at the particle level. The model considers the cement hydration process as a time and 3D space system, involving multiple diffusing and reacting species of spherical particles. Chemical reactions are simulated by adaptively selecting discrete stochastic simulation for the appropriate reaction, whenever that is necessary. Interactions between particles are also considered. The model has been inspired by reported cellular automata?s approach which provides detailed predictions of cement microstructure at the expense of significant computational difficulty. The ABM approach herein seeks to bring about an optimal balance between accuracy and computational efficiency.
Resumo:
Natural regeneration is an ecological key-process that makes plant persistence possible and, consequently, it constitutes an essential element of sustainable forest management. In this respect, natural regeneration in even-aged stands of Pinus pinea L. located in the Spanish Northern Plateau has not always been successfully achieved despite over a century of pine nut-based management. As a result, natural regeneration has recently become a major concern for forest managers when we are living a moment of rationalization of investment in silviculture. The present dissertation is addressed to provide answers to forest managers on this topic through the development of an integral regeneration multistage model for P. pinea stands in the region. From this model, recommendations for natural regeneration-based silviculture can be derived under present and future climate scenarios. Also, the model structure makes it possible to detect the likely bottlenecks affecting the process. The integral model consists of five submodels corresponding to each of the subprocesses linking the stages involved in natural regeneration (seed production, seed dispersal, seed germination, seed predation and seedling survival). The outputs of the submodels represent the transitional probabilities between these stages as a function of climatic and stand variables, which in turn are representative of the ecological factors driving regeneration. At subprocess level, the findings of this dissertation should be interpreted as follows. The scheduling of the shelterwood system currently conducted over low density stands leads to situations of dispersal limitation since the initial stages of the regeneration period. Concerning predation, predator activity appears to be only limited by the occurrence of severe summer droughts and masting events, the summer resulting in a favourable period for seed survival. Out of this time interval, predators were found to almost totally deplete seed crops. Given that P. pinea dissemination occurs in summer (i.e. the safe period against predation), the likelihood of a seed to not be destroyed is conditional to germination occurrence prior to the intensification of predator activity. However, the optimal conditions for germination seldom take place, restraining emergence to few days during the fall. Thus, the window to reach the seedling stage is narrow. In addition, the seedling survival submodel predicts extremely high seedling mortality rates and therefore only some individuals from large cohorts will be able to persist. These facts, along with the strong climate-mediated masting habit exhibited by P. pinea, reveal that viii the overall probability of establishment is low. Given this background, current management –low final stand densities resulting from intense thinning and strict felling schedules– conditions the occurrence of enough favourable events to achieve natural regeneration during the current rotation time. Stochastic simulation and optimisation computed through the integral model confirm this circumstance, suggesting that more flexible and progressive regeneration fellings should be conducted. From an ecological standpoint, these results inform a reproductive strategy leading to uneven-aged stand structures, in full accordance with the medium shade-tolerant behaviour of the species. As a final remark, stochastic simulations performed under a climate-change scenario show that regeneration in the species will not be strongly hampered in the future. This resilient behaviour highlights the fundamental ecological role played by P. pinea in demanding areas where other tree species fail to persist.
Resumo:
Bistability and switching are two important aspects of the genetic regulatory network of phage. Positive and negative feedbacks are key regulatory mechanisms in this network. By the introduction of threshold values, the developmental pathway of A phage is divided into different stages. If the protein level reaches a threshold value, positive or negative feedback will be effective and regulate the process of development. Using this regulatory mechanism, we present a quantitative model to realize bistability and switching of phage based on experimental data. This model gives descriptions of decisive mechanisms for different pathways in induction. A stochastic model is also introduced for describing statistical properties of switching in induction. A stochastic degradation rate is used to represent intrinsic noise in induction for switching the system from the lysogenic pathway to the lysis pathway. The approach in this paper represents an attempt to describe the regulatory mechanism in genetic regulatory network under the influence of intrinsic noise in the framework of continuous models. (C) 2003 Elsevier Ltd. All rights reserved.