982 resultados para steel protection
Resumo:
In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.
Analysis of diametrical wear of grinding wheel and roundness errors in the machining of steel VC 131
Resumo:
Due to the high industrial competitiveness, the rigorous laws of environmental protection, the necessary reduction of costs, the mechanical industry sees itself forced to worry more and more with the refinement of your processes and products. In this context, can be mentioned the need to eliminate the roundness errors that appear after the grinding process. This work has the objective of verifying if optimized nozzles for the application of cutting fluid in the grinding process can minimize the formation of the roundness errors and the diametrical wear of grinding wheel in the machining of the steel VC 131 with 60 HRc, when compared to the conventional nozzles. These nozzles were analyzed using two types of grinding wheels and two different cutting fluids. Was verified that the nozzle of 3mm of diameter, integral oil and the CBN grinding wheel, were the best options to obtain smaller roundness errors and the lowest diametrical wears of grinding wheels.
Resumo:
It is well known that fatigue behaviour is an important parameter to be considered in mechanical components subjected to constant and variable amplitude loadings. In combination with corrosion phenomenon, fatigue effects were responsible for proximally 64% of fails that occur in metallic parts of aeronautical accidents in the last 30 years. Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance, resulted in the search for possible alternatives. Zinc-nickel alloys received considerable interest recently, since these coatings showed some advantages such as a good resistance to white and red rust, high plating rates and acceptation in the market. In this study the effects of zinc-nickel coatings electroplated on AISI 4340 high strength steel were analysed on rotating bending and axial fatigue strength, corrosion and adhesion resistance. Compressive residual stress field was measured by a X-ray tensometry prior to fatigue tests. Optical microscopy images showed coating thicknesses, adhesion and the existence of an uniform coverage of nearly all substrates. The fractured fatigue specimens were investigated using a scanning electron microscope. Three different zinc-nickel coating thicknesses were tested and comparison with rotating bending fatigue data from specimens cadmium electroplated and heat treated at 190°C for 3, 8 and 24 hours to avoid the diffusion of hydrogen in the substrate, was performed. Experimental results showed effect of coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the existence of coating thickness influence on the fatigue strength.
Resumo:
A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper. © 2010 IOP Publishing Ltd.
Resumo:
The influence of benzoyl peroxide (BPO) on the synthesis of polysiloxane thin films doped with Ce(III) deposited onto Sn coated steel as well as their anticorrosion properties are reported. The addition of BPO, whose role is polymerize the film, showed an increase in |Z| values due to the fact that augments the crossed link bonds and therefore improves the protective feature of the film. Ce(III) does not act in the polymerization process and thus is essential the addition of BPO to obtain more resistant polysiloxane films. ©The Electrochemical Society.
Resumo:
The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Since the earliest developments of human history, friction has been a major issue. From the invention of the wheel and the use of the first lubricants to the studiesof coated and microtexturized surfaces, significant effort has been put on improvements that couldovercome the resistance to motion. Areview by Holmberg, Andersson and Erdemir[1] shows that, in an average passenger car, about one third of the total energy consumptionis due to friction losses. Of these, another one third is consumed in the engine system. The optimization of the lubricating oil formulation used ininternal combustion enginesis an important way to reduce friction, therefore improving energeticefficiencyand controllingemissions.Lubrication is also a way to assure the required protection to the system by maintaining wear rates in an adequate level, which helps to minimize maintenance costs.
Resumo:
Rockfall protection barriers are connected to the ground using steel cables fixed with anchors and foundations for the steel posts. It is common practice to measure the forces in the cables, while to date measurements of forces in the foundations have been inadequately resolved. An overview is presented of existing methods to measure the loads on the post foundations of rockfall protection barriers. Addressing some of the inadequacies of existing approaches, a novel sensor unit is presented that is able to capture the forces acting on post foundations in all six degrees of freedom. The sensor unit consists of four triaxial force sensors placed between two steel plates. To correctly convert the measurements into the directional forces acting on the foundation a special in-situ calibration procedure is proposed that delivers a corresponding conversion matrix.
Resumo:
Because of their remarkable mechanical properties, nanocrystalline metals have been the focus of much research in recent years. Refining their grain size to the nanometer range (<100 nm) effectively reduces their dislocation mobility, thus achieving very high yield strength and surface hardness—as predicted by the Hall–Petch relation—as well as higher strain-rate sensitivity. Recent works have additionally suggested that nanocrystalline metals exhibit an even higher compressive strength under shock loading. However, the increase in strength of these materials is generally accompanied by an important reduction in ductility. As an alternative, efforts have been focused on ultrafine crystals, i.e. polycrystals with a grain size in the range of 500 nm to 1 μm, in which “growth twins” (twins introduced inside the grain before deformation) act as barriers against dislocation movement, thus increasing the strength in a similar way as nanocrystals but without significant loss of ductility. Due to their outstanding mechanical properties, both nanocrystalline and nanotwinned ultrafine crystalline steels appear to be relevant candidates for ballistic protection. The aim of the present work is to compare their ballistic performance against coarse-grained steel, as well as to identify the effect of the hybridization with a carbon fiber–epoxy composite layer. Hybridization is proposed as a way to improve the nanocrystalline brittle properties in a similar way as is done with ceramics in other protection systems. The experimental campaign is finally complemented by numerical simulations to help identify some of the intrinsic deformation mechanisms not observable experimentally. As a conclusion, nanocrystalline and nanotwinned ultrafine crystals show a lower energy absorption than coarse-grained steel under ballistic loading, but under equal impact conditions with no penetration, deformation in the impact direction is smaller by nearly 40%. This a priori surprising difference in the energy absorption is rationalized by the more important local contribution of the deviatoric stress vs. volumetric stress under impact than under uniaxial deformation. Ultimately, the deformation advantage could be exploited in the future for personal protection systems where a small deformation under impact is of key importance.
Resumo:
This article describes the research carried out regarding the application of cathodic protection (CP) and cathodic prevention (CPrev), in some cases with a pre-treatment of electrochemical chloride extraction (ECE), on representative specimens of reinforced concrete structures, using an anodic system consisting of a graphite-cement paste applied as a coating on the surface. The aim of this research is to find out the competence of this anode for the aforementioned electrochemical treatments. The efficiency of this anode has been clearly demonstrated, as well as its capability to apply a combined process of ECE and after CP.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.
Resumo:
This study is concerned with the mechanisms of growth and wear of protective oxide films formed under various tribological conditions. In the study three different tribological systems are examined in each of which oxidational wear is the dominant equilibrium mode. These are an unlubricated steel on steel system sliding at low and elevated temperatures, a boundary lubricated aluminium bronze on steel system and an unlubricated reciprocating sliding 9% Cr steel system operated at elevated temperature, in an atmosphere of carbon dioxide. The results of mechanical measurements of wear and friction are presented for a range of conditions of load, speed and temper.ature for the systems, together with the results of extensive examinations of the surfaces and sub surfaces by various physical methods of analysis. The major part of the thesis, however, is devoted to the development and application of surface models and theoretical quantative expressions in order to explain the observed oxidational wear phenomena. In this work, the mechanisms of formation of load bearing ox ide plateaux are described and are found to be dependent on system geometry and environment. The relative importance of ''in contact" and "out of contact" oxidation is identified together with growth rate constants appropriate to the two situations. Hypotheses are presented to explain the mechanisms of removal of plateaux to form wear debris. The latter hypotheses include the effects of cyclic stressing and dislocation accumulation, together with effects associated with the kinetics of growth and physical properties of the various oxides. The proposed surf ace mode1s have led to the develop ment of quantitative expressions for contact temperature, unlubricated wear rates, boundary lubricated wear rates and the wear of rna ter ial during the transition from severe to mild wear. In general theoretical predictions from these expressions are in very good agreement with experimental values.