1000 resultados para spinless particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commuting in various transport modes represents an activity likely to incur significant exposure to traffic emissions. This study investigated the determinants and characteristics of exposure to ultrafine (< 100 nm) particles (UFPs) in four transport modes in Sydney, with a specific focus on exposure in automobiles, which remain the transport mode of choice for approximately 70% of Sydney commuters. UFP concentrations were measured using a portable condensation particle counter (CPC) inside five automobiles commuting on above ground and tunnel roadways, and in buses, ferries and trains. Determinant factors investigated included wind speed, cabin ventilation (automobiles only) and traffic volume. The results showed that concentrations varied significantly as a consequence of transport mode, vehicle type and ventilation characteristics. The effects of wind speed were minimal relative to those of traffic volume (especially heavy diesel vehicles) and cabin ventilation, with the latter proving to be a strong determinant of UFP ingress into automobiles. The effect of ~70 minutes of commuting on total daily exposure was estimated using a range of UFP concentrations reported for several microenvironments. A hypothetical Sydney resident commuting by automobile and spending 8.5 minutes of their day in the M5 East tunnel could incur anywhere from a lower limit of 3-11% to an upper limit of 37-69% of daily UFP exposure during a return commute, depending on the concentrations they encountered in other microenvironments, the type of vehicle they used and the ventilation setting selected. However, commute-time exposures at either extreme of the values presented are unlikely to occur in practice. The range of exposures estimated for other transport modes were comparable to those of automobiles, and in the case of buses, higher than automobiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials consisting of anatase linked to Laponite particles were synthesized by the reaction of TiOSO4 with Laponite, and were used for the degradation of pesticides. All these materials were characterized by XRD, FTIR, Raman, TEM, specific surface area and porosity determinations. Based on the amount of photoactive phase per unit mass of the clay mineral, not based on the total weight of the catalysts, these porous catalysts were displaying a high degradation rate than commercial P25. The TiO2 immobilized clay mineral catalysts can sediment in few minutes and could be readily separated out from a slurry system after the photocatalytic reaction. Settling properties of these catalysts are enormously high in aqueous media in contrast to P25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problems associated with processing whole sugarcane crop can be minimised by removing impurities during the clarification stage. As a first step, it is important to understand the colloidal chemistry of juice particles on a molecular level to assist development strategies for effective clarification performance. This paper presents the composition and surface characteristics of colloidal particles originating from various juice types by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. The composition and surface characteristics of colloidal juice particles are reported. The results indicate that there are three types of colloidal particles present viz., an aluminosilicate compound, silica and iron oxide, with the latter two being abundant. Proteins, polysaccharides and organic acids were identified on the surface of particles in juice. The overall particle charge varies from –2 mV to –6 mV. In comparison to juice expressed from burnt cane, the zeta potential values were more negative with juice particles originating from whole crop. This in part explains why these juices are difficult to clarify.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to ultrafine particles (diameter less than 100 nm) is an important topic in epidemiological and toxicological studies. This study used the average particle number size distribution data obtained from our measurement survey in major micro-environments, together with the people activity pattern data obtained from the Italian Human Activity Pattern Survey to estimate the tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. We developed a numerical methodology based on Monte Carlo method, in order to estimate the best combination from a probabilistic point of view. More than 106 different cases were analyzed according to a purpose built sub-routine and our results showed that the daily alveolar particle number and surface area deposited for all of the age groups considered was equal to 1.5 x 1011 particles and 2.5 x 1015 m2, respectively, varying slightly for males and females living in Northern or Southern Italy. In terms of tracheobronchial deposition, the corresponding values for daily particle number and surface area for all age groups was equal to 6.5 x 1010 particles and 9.9 x 1014 m2, respectively. Overall, the highest contributions were found to come from indoor cooking (female), working time (male) and transportation (i.e. traffic derived particles) (children).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research has described the restructuring of particles upon exposure to organic vapours; however, as yet hypotheses able to explain this phenomenon are limited. In this study, a range of experiments were performed to explore different hypotheses related to carbonaceous particle restructuring upon exposure to organic and water vapours, such as: the effect of surface tension, the role of organics in flocculating primary particles, as well as the ability of vapours to “wet” the particle surface. The change in mobility diameter (dm) was investigated for a range carbonaceous particle types (diesel exhaust, petrol exhaust, cigarette smoke, candle smoke, particles generated in a heptane/toluene flame, and wood smoke particles) exposed to different organic (heptane, ethanol, and dimethyl sulfoxide/water (1:1 vol%) mixture) and water vapours. Particles were first size-selected and then bubbled through an impinger (bubbler) containing either an organic solvent or water, where particles trapped inside rising bubbles were exposed to saturated vapours of the solvent in the impinger. The size distribution of particles was simultaneously measured upstream and downstream from the impinger. A size-dependent reduction in dm was observed when bubbling diesel exhaust, particles generated in a heptane/toluene flame, and candle smoke particles through heptane, ethanol and a dimethyl sulfoxide/water (1:1 vol %) mixture. In addition, the size distributions of particles bubbled through an impinger were broader. Moreover, an increase of the geometric standard deviation (σ) of the size distributions of particles bubbled through an impinger was also found to be size-dependent. Size-dependent reduction in dm and an increase of σ indicate that particles undergo restructuring to a more compact form, which was confirmed by TEM analysis. However, bubbling of these particles through water did not result in a size-dependent reduction in dm, nor in an increase of σ. Cigarette smoke, petrol exhaust, and wood smoke particles did not result in any substantial change in dm, or σ, when bubbled through organic solvents or water. Therefore, size-dependent reduction in the dm upon bubbling through organic solvents was observed only for particles that had a fractal-like structure, whilst particles that were liquid or were assumed to be spherical did not exhibit any reduction in dm. Compaction of fractal-like particles was attributed to the ability of condensing vapours to efficiently wet the particles. Our results also show that the presence of an organic layer on the surface of fractal-like particles, or the surface tension of the condensed liquid do not influence the extent of compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-activity patterns and the airborne pollutant concentrations encountered by children each day are an important determinant of individual exposure to airborne particles. This is demonstrated in this work by using hand-held devices to measure the real-time individual exposure of more than 100 children aged 8-11 years to particle number concentrations and average particle diameter, as well as alveolar and tracheobronchial deposited surface area concentration. A GPS-logger and activity diaries were also used to give explanation to the measurement results. Children were divided in three sample groups: two groups comprised of urban schools (school time from 8:30 am to 1:30 pm) with lunch and dinner at home, and the third group of a rural school with only dinner at home. The mean individual exposure to particle number concentration was found to differ between the three groups, ranging from 6.2×104 part. cm-3 for children attending one urban school to 1.6×104 part. cm-3 for the rural school. The corresponding daily alveolar deposited surface area dose varied from about 1.7×103 mm2 for urban schools to 6.0×102 mm2 for the rural school. For all of the children monitored, the lowest particle number concentrations are found during sleeping time and the highest were found during eating time. With regard to alveolar deposited surface area dose, a child's home was the major contributor (about 70%), with school contributing about 17% for urban schools and 27% for the rural school. An important contribution arises from the cooking/eating time spent at home, which accounted for approximately 20% of overall exposure, corresponding to more than 200 mm2. These activities represent the highest dose received per time unit, with very high values also encountered by children with a fireplace at home, as well as those that spend considerable time stuck in traffic jams.