946 resultados para speech features
Resumo:
Internet has affected our lives and society in manifold ways, and partly, in fundamental ways. Therefore, it is no surprise that one of the affected areas is language and communication itself. Over the last few years, online social networks have become a widespread and continuously expanding medium of communication. Being a new medium of social interaction, online social networks produce their own communication style, which in many cases differs considerably from real speech and is also perceived differently. The focus of analysis of my PhD thesis is how social network users from the city of Malaga create this virtual style by means of phonic features typical of the Andalusian variety of Spanish and how the users’ language attitude has an influence on the use of these phonic features. The data collection was fourfold: 1) a main corpus was compiled from 240 informants’ utterances on Facebook and Tuenti; 2) a corpus constituted of broad transcriptions of recordings with 120 people from Malaga served as a comparison; 3) a survey in which 240 participants rated the use of said phonetic variants on the following axes: “good–bad”, “correct–incorrect” and “beautiful–ugly” was carried out; 4) a survey with 240 participants who estimated with which frequency the analysed features are used in Malaga was conducted. For the analysis, which is quantitative and qualitative, ten variables were chosen. Results show that the studied variants are employed differently in virtual and real speech depending on how people perceive these variants. In addition, the use of the features is constrained by social factors. In general, people from Malaga have a more positive attitude towards non-‐standard features if they are used in virtual speech than in real speech. Thus, virtual communication is seen as a style serving to create social meaning and to express linguistic identity. These stylistic practices reflect an amalgam of social presuppositions about usage conventions and individual strategies for handling a new medium. In sum, the virtual style is an initiative deliberately taken by the users, to create their, real and virtual, identities, and to define their language attitudes towards the features of their variety of speech.
Resumo:
Whereas semantic, logical, and narrative features of verbal humor are well-researched, phonological and prosodic dimensions of verbal funniness are hardly explored. In a 2 × 2 design we varied rhyme and meter in humorous couplets. Rhyme and meter enhanced funniness ratings and supported faster processing. Rhyming couplets also elicited more intense and more positive affective responses, increased subjective comprehensibility and more accurate memory. The humor effect is attributed to special rhyme and meter features distinctive of humoristic poetry in several languages. Verses that employ these formal features make an artful use of typical poetic vices of amateurish poems written for birthday parties or other occasions. Their metrical patterning sounds “mechanical” rather than genuinely “poetic”; they also disregard rules for “good” rhymes. The processing of such verses is discussed in terms of a metacognitive integration of their poetically deviant features into an overall effect of processing ease. The study highlights the importance of nonsemantic rhetorical features in language processing.
Resumo:
OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Resumo:
Two new features have been proposed and used in the Rich Transcription Evaluation 2009 by the Universidad Politécnica de Madrid, which outperform the results of the baseline system. One of the features is the intensity channel contribution, a feature related to the location of the speaker. The second feature is the logarithm of the interpolated fundamental frequency. It is the first time that both features are applied to the clustering stage of multiple distant microphone meetings diarization. It is shown that the inclusion of both features improves the baseline results by 15.36% and 16.71% relative to the development set and the RT 09 set, respectively. If we consider speaker errors only, the relative improvement is 23% and 32.83% on the development set and the RT09 set, respectively.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.
Resumo:
We present a novel approach for the detection of severe obstructive sleep apnea (OSA) based on patients' voices introducing nonlinear measures to describe sustained speech dynamics. Nonlinear features were combined with state-of-the-art speech recognition systems using statistical modeling techniques (Gaussian mixture models, GMMs) over cepstral parameterization (MFCC) for both continuous and sustained speech. Tests were performed on a database including speech records from both severe OSA and control speakers. A 10 % relative reduction in classification error was obtained for sustained speech when combining MFCC-GMM and nonlinear features, and 33 % when fusing nonlinear features with both sustained and continuous MFCC-GMM. Accuracy reached 88.5 % allowing the system to be used in OSA early detection. Tests showed that nonlinear features and MFCCs are lightly correlated on sustained speech, but uncorrelated on continuous speech. Results also suggest the existence of nonlinear effects in OSA patients' voices, which should be found in continuous speech.
Resumo:
In order to obtain more human like sounding humanmachine interfaces we must first be able to give them expressive capabilities in the way of emotional and stylistic features so as to closely adequate them to the intended task. If we want to replicate those features it is not enough to merely replicate the prosodic information of fundamental frequency and speaking rhythm. The proposed additional layer is the modification of the glottal model, for which we make use of the GlottHMM parameters. This paper analyzes the viability of such an approach by verifying that the expressive nuances are captured by the aforementioned features, obtaining 95% recognition rates on styled speaking and 82% on emotional speech. Then we evaluate the effect of speaker bias and recording environment on the source modeling in order to quantify possible problems when analyzing multi-speaker databases. Finally we propose a speaking styles separation for Spanish based on prosodic features and check its perceptual significance.
Resumo:
La presente Tesis analiza las posibilidades que ofrecen en la actualidad las tecnologías del habla para la detección de patologías clínicas asociadas a la vía aérea superior. El estudio del habla que tradicionalmente cubre tanto la producción como el proceso de transformación del mensaje y las señales involucradas, desde el emisor hasta alcanzar al receptor, ofrece una vía de estudio alternativa para estas patologías. El hecho de que la señal emitida no solo contiene este mensaje, sino también información acerca del locutor, ha motivado el desarrollo de sistemas orientados a la identificación y verificación de la identidad de los locutores. Estos trabajos han recibido recientemente un nuevo impulso, orientándose tanto hacia la caracterización de rasgos que son comunes a varios locutores, como a las diferencias existentes entre grabaciones de un mismo locutor. Los primeros resultan especialmente relevantes para esta Tesis dado que estos rasgos podrían evidenciar la presencia de características relacionadas con una cierta condición común a varios locutores, independiente de su identidad. Tal es el caso que se enfrenta en esta Tesis, donde los rasgos identificados se relacionarían con una de la patología particular y directamente vinculada con el sistema de físico de conformación del habla. El caso del Síndrome de Apneas Hipopneas durante el Sueno (SAHS) resulta paradigmático. Se trata de una patología con una elevada prevalencia mundo, que aumenta con la edad. Los pacientes de esta patología experimentan episodios de cese involuntario de la respiración durante el sueño, que se prolongan durante varios segundos y que se reproducen a lo largo de la noche impidiendo el correcto descanso. En el caso de la apnea obstructiva, estos episodios se deben a la imposibilidad de mantener un camino abierto a través de la vía aérea, de forma que el flujo de aire se ve interrumpido. En la actualidad, el diagnostico de estos pacientes se realiza a través de un estudio polisomnográfico, que se centra en el análisis de los episodios de apnea durante el sueño, requiriendo que el paciente permanezca en el hospital durante una noche. La complejidad y el elevado coste de estos procedimientos, unidos a las crecientes listas de espera, han evidenciado la necesidad de contar con técnicas rápidas de detección, que si bien podrían no obtener tasas tan elevadas, permitirían reorganizar las listas de espera en función del grado de severidad de la patología en cada paciente. Entre otros, los sistemas de diagnostico por imagen, así como la caracterización antropométrica de los pacientes, han evidenciado la existencia de patrones anatómicos que tendrían influencia directa sobre el habla. Los trabajos dedicados al estudio del SAHS en lo relativo a como esta afecta al habla han sido escasos y algunos de ellos incluso contradictorios. Sin embargo, desde finales de la década de 1980 se conoce la existencia de patrones específicos relativos a la articulación, la fonación y la resonancia. Sin embargo, su descripción resultaba difícilmente aprovechable a través de un sistema de reconocimiento automático, pero apuntaba la existencia de un nexo entre voz y SAHS. En los últimos anos las técnicas de procesado automático han permitido el desarrollo de sistemas automáticos que ya son capaces de identificar diferencias significativas en el habla de los pacientes del SAHS, y que los distinguen de los locutores sanos. Por contra, poco se conoce acerca de la conexión entre estos nuevos resultados, los sé que habían obtenido en el pasado y la patogénesis del SAHS. Esta Tesis continua la labor desarrollada en este ámbito considerando específicamente: el estudio de la forma en que el SAHS afecta el habla de los pacientes, la mejora en las tasas de clasificación automática y la combinación de la información obtenida con los predictores utilizados por los especialistas clínicos en sus evaluaciones preliminares. Las dos primeras tareas plantean problemas simbióticos, pero diferentes. Mientras el estudio de la conexión entre el SAHS y el habla requiere de modelos acotados que puedan ser interpretados con facilidad, los sistemas de reconocimiento se sirven de un elevado número de dimensiones para la caracterización y posterior identificación de patrones. Así, la primera tarea debe permitirnos avanzar en la segunda, al igual que la incorporación de los predictores utilizados por los especialistas clínicos. La Tesis aborda el estudio tanto del habla continua como del habla sostenida, con el fin de aprovechar las sinergias y diferencias existentes entre ambas. En el análisis del habla continua se tomo como punto de partida un esquema que ya fue evaluado con anterioridad, y sobre el cual se ha tratado la evaluación y optimización de la representación del habla, así como la caracterización de los patrones específicos asociados al SAHS. Ello ha evidenciado la conexión entre el SAHS y los elementos fundamentales de la señal de voz: los formantes. Los resultados obtenidos demuestran que el éxito de estos sistemas se debe, fundamentalmente, a la capacidad de estas representaciones para describir dichas componentes, obviando las dimensiones ruidosas o con poca capacidad discriminativa. El esquema resultante ofrece una tasa de error por debajo del 18%, sirviéndose de clasificadores notablemente menos complejos que los descritos en el estado del arte y de una única grabación de voz de corta duración. En relación a la conexión entre el SAHS y los patrones observados, fue necesario considerar las diferencias inter- e intra-grupo, centrándonos en la articulación característica del locutor, sustituyendo los complejos modelos de clasificación por el estudio de los promedios espectrales. El resultado apunta con claridad hacia ciertas regiones del eje de frecuencias, sugiriendo la existencia de un estrechamiento sistemático en la sección del tracto en la región de la orofaringe, ya prevista en la patogénesis de este síndrome. En cuanto al habla sostenida, se han reproducido los estudios realizados sobre el habla continua en grabaciones de la vocal /a/ sostenida. Los resultados son cualitativamente análogos a los anteriores, si bien en este caso las tasas de clasificación resultan ser más bajas. Con el objetivo de identificar el sentido de este resultado se reprodujo el estudio de los promedios espectrales y de la variabilidad inter e intra-grupo. Ambos estudios mostraron importantes diferencias con los anteriores que podrían explicar estos resultados. Sin embargo, el habla sostenida ofrece otras oportunidades al establecer un entorno controlado para el estudio de la fonación, que también había sido identificada como una fuente de información para la detección del SAHS. De su estudio se pudo observar que, en el conjunto de datos disponibles, no existen variaciones que pudieran asociarse fácilmente con la fonación. Únicamente aquellas dimensiones que describen la distribución de energía a lo largo del eje de frecuencia evidenciaron diferencias significativas, apuntando, una vez más, en la dirección de las resonancias espectrales. Analizados los resultados anteriores, la Tesis afronta la fusión de ambas fuentes de información en un único sistema de clasificación. Con ello es posible mejorar las tasas de clasificación, bajo la hipótesis de que la información presente en el habla continua y el habla sostenida es fundamentalmente distinta. Esta tarea se realizo a través de un sencillo esquema de fusión que obtuvo un 88.6% de aciertos en clasificación (tasa de error del 11.4%), lo que representa una mejora significativa respecto al estado del arte. Finalmente, la combinación de este clasificador con los predictores utilizados por los especialistas clínicos ofreció una tasa del 91.3% (tasa de error de 8.7%), que se encuentra dentro del margen ofrecido por esquemas más costosos e intrusivos, y que a diferencia del propuesto, no pueden ser utilizados en la evaluación previa de los pacientes. Con todo, la Tesis ofrece una visión clara sobre la relación entre el SAHS y el habla, evidenciando el grado de madurez alcanzado por la tecnología del habla en la caracterización y detección del SAHS, poniendo de manifiesto que su uso para la evaluación de los pacientes ya sería posible, y dejando la puerta abierta a futuras investigaciones que continúen el trabajo aquí iniciado. ABSTRACT This Thesis explores the potential of speech technologies for the detection of clinical disorders connected to the upper airway. The study of speech traditionally covers both the production process and post processing of the signals involved, from the speaker up to the listener, offering an alternative path to study these pathologies. The fact that utterances embed not just the encoded message but also information about the speaker, has motivated the development of automatic systems oriented to the identification and verificaton the speaker’s identity. These have recently been boosted and reoriented either towards the characterization of traits that are common to several speakers, or to the differences between records of the same speaker collected under different conditions. The first are particularly relevant to this Thesis as these patterns could reveal the presence of features that are related to a common condition shared among different speakers, regardless of their identity. Such is the case faced in this Thesis, where the traits identified would relate to a particular pathology, directly connected to the speech production system. The Obstructive Sleep Apnea syndrome (OSA) is a paradigmatic case for analysis. It is a disorder with high prevalence among adults and affecting a larger number of them as they grow older. Patients suffering from this disorder experience episodes of involuntary cessation of breath during sleep that may last a few seconds and reproduce throughout the night, preventing proper rest. In the case of obstructive apnea, these episodes are related to the collapse of the pharynx, which interrupts the air flow. Currently, OSA diagnosis is done through a polysomnographic study, which focuses on the analysis of apnea episodes during sleep, requiring the patient to stay at the hospital for the whole night. The complexity and high cost of the procedures involved, combined with the waiting lists, have evidenced the need for screening techniques, which perhaps would not achieve outstanding performance rates but would allow clinicians to reorganize these lists ranking patients according to the severity of their condition. Among others, imaging diagnosis and anthropometric characterization of patients have evidenced the existence of anatomical patterns related to OSA that have direct influence on speech. Contributions devoted to the study of how this disorder affects scpeech are scarce and somehow contradictory. However, since the late 1980s the existence of specific patterns related to articulation, phonation and resonance is known. By that time these descriptions were virtually useless when coming to the development of an automatic system, but pointed out the existence of a link between speech and OSA. In recent years automatic processing techniques have evolved and are now able to identify significant differences in the speech of OSAS patients when compared to records from healthy subjects. Nevertheless, little is known about the connection between these new results with those published in the past and the pathogenesis of the OSA syndrome. This Thesis is aimed to progress beyond the previous research done in this area by addressing: the study of how OSA affects patients’ speech, the enhancement of automatic OSA classification based on speech analysis, and its integration with the information embedded in the predictors generally used by clinicians in preliminary patients’ examination. The first two tasks, though may appear symbiotic at first, are quite different. While studying the connection between speech and OSA requires simple narrow models that can be easily interpreted, classification requires larger models including a large number dimensions for the characterization and posterior identification of the observed patterns. Anyhow, it is clear that any progress made in the first task should allow us to improve our performance on the second one, and that the incorporation of the predictors used by clinicians shall contribute in this same direction. The Thesis considers both continuous and sustained speech analysis, to exploit the synergies and differences between them. On continuous speech analysis, a conventional speech processing scheme, designed and evaluated before this Thesis, was taken as a baseline. Over this initial system several alternative representations of the speech information were proposed, optimized and tested to select those more suitable for the characterization of OSA-specific patterns. Evidences were found on the existence of a connection between OSA and the fundamental constituents of the speech: the formants. Experimental results proved that the success of the proposed solution is well explained by the ability of speech representations to describe these specific OSA-related components, ignoring the noisy ones as well those presenting low discrimination capabilities. The resulting scheme obtained a 18% error rate, on a classification scheme significantly less complex than those described in the literature and operating on a single speech record. Regarding the connection between OSA and the observed patterns, it was necessary to consider inter-and intra-group differences for this analysis, and to focus on the articulation, replacing the complex classification models by the long-term average spectra. Results clearly point to certain regions on the frequency axis, suggesting the existence of a systematic narrowing in the vocal tract section at the oropharynx. This was already described in the pathogenesis of this syndrome. Regarding sustained speech, similar experiments as those conducted on continuous speech were reproduced on sustained phonations of vowel / a /. Results were qualitatively similar to the previous ones, though in this case perfomance rates were found to be noticeably lower. Trying to derive further knowledge from this result, experiments on the long-term average spectra and intraand inter-group variability ratios were also reproduced on sustained speech records. Results on both experiments showed significant differences from the previous ones obtained from continuous speech which could explain the differences observed on peformance. However, sustained speech also provided the opportunity to study phonation within the controlled framework it provides. This was also identified in the literature as a source of information for the detection of OSA. In this study it was found that, for the available dataset, no sistematic differences related to phonation could be found between the two groups of speakers. Only those dimensions which relate energy distribution along the frequency axis provided significant differences, pointing once again towards the direction of resonant components. Once classification schemes on both continuous and sustained speech were developed, the Thesis addressed their combination into a single classification system. Under the assumption that the information in continuous and sustained speech is fundamentally different, it should be possible to successfully merge the two of them. This was tested through a simple fusion scheme which obtained a 88.6% correct classification (11.4% error rate), which represents a significant improvement over the state of the art. Finally, the combination of this classifier with the variables used by clinicians obtained a 91.3% accuracy (8.7% error rate). This is within the range of alternative, but costly and intrusive schemes, which unlike the one proposed can not be used in the preliminary assessment of patients’ condition. In the end, this Thesis has shed new light on the underlying connection between OSA and speech, and evidenced the degree of maturity reached by speech technology on OSA characterization and detection, leaving the door open for future research which shall continue in the multiple directions that have been pointed out and left as future work.
Resumo:
MFCC coefficients extracted from the power spectral density of speech as a whole, seems to have become the de facto standard in the area of speaker recognition, as demonstrated by its use in almost all systems submitted to the 2013 Speaker Recognition Evaluation (SRE) in Mobile Environment [1], thus relegating to background this component of the recognition systems. However, in this article we will show that selecting the adequate speaker characterization system is as important as the selection of the classifier. To accomplish this we will compare the recognition rates achieved by different recognition systems that relies on the same classifier (GMM-UBM) but connected with different feature extraction systems (based on both classical and biometric parameters). As a result we will show that a gender dependent biometric parameterization with a simple recognition system based on GMM- UBM paradigm provides very competitive or even better recognition rates when compared to more complex classification systems based on classical features
Resumo:
Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.
Resumo:
La cuestión principal abordada en esta tesis doctoral es la mejora de los sistemas biométricos de reconocimiento de personas a partir de la voz, proponiendo el uso de una nueva parametrización, que hemos denominado parametrización biométrica extendida dependiente de género (GDEBP en sus siglas en inglés). No se propone una ruptura completa respecto a los parámetros clásicos sino una nueva forma de utilizarlos y complementarlos. En concreto, proponemos el uso de parámetros diferentes dependiendo del género del locutor, ya que como es bien sabido, la voz masculina y femenina presentan características diferentes que deberán modelarse, por tanto, de diferente manera. Además complementamos los parámetros clásicos utilizados (MFFC extraídos de la señal de voz), con un nuevo conjunto de parámetros extraídos a partir de la deconstrucción de la señal de voz en sus componentes de fuente glótica (más relacionada con el proceso y órganos de fonación y por tanto con características físicas del locutor) y de tracto vocal (más relacionada con la articulación acústica y por tanto con el mensaje emitido). Para verificar la validez de esta propuesta se plantean diversos escenarios, utilizando diferentes bases de datos, para validar que la GDEBP permite generar una descripción más precisa de los locutores que los parámetros MFCC clásicos independientes del género. En concreto se plantean diferentes escenarios de identificación sobre texto restringido y texto independiente utilizando las bases de datos de HESPERIA y ALBAYZIN. El trabajo también se completa con la participación en dos competiciones internacionales de reconocimiento de locutor, NIST SRE (2010 y 2012) y MOBIO 2013. En el primer caso debido a la naturaleza de las bases de datos utilizadas se obtuvieron resultados cercanos al estado del arte, mientras que en el segundo de los casos el sistema presentado obtuvo la mejor tasa de reconocimiento para locutores femeninos. A pesar de que el objetivo principal de esta tesis no es el estudio de sistemas de clasificación, sí ha sido necesario analizar el rendimiento de diferentes sistemas de clasificación, para ver el rendimiento de la parametrización propuesta. En concreto, se ha abordado el uso de sistemas de reconocimiento basados en el paradigma GMM-UBM, supervectores e i-vectors. Los resultados que se presentan confirman que la utilización de características que permitan describir los locutores de manera más precisa es en cierto modo más importante que la elección del sistema de clasificación utilizado por el sistema. En este sentido la parametrización propuesta supone un paso adelante en la mejora de los sistemas de reconocimiento biométrico de personas por la voz, ya que incluso con sistemas de clasificación relativamente simples se consiguen tasas de reconocimiento realmente competitivas. ABSTRACT The main question addressed in this thesis is the improvement of automatic speaker recognition systems, by the introduction of a new front-end module that we have called Gender Dependent Extended Biometric Parameterisation (GDEBP). This front-end do not constitute a complete break with respect to classical parameterisation techniques used in speaker recognition but a new way to obtain these parameters while introducing some complementary ones. Specifically, we propose a gender-dependent parameterisation, since as it is well known male and female voices have different characteristic, and therefore the use of different parameters to model these distinguishing characteristics should provide a better characterisation of speakers. Additionally, we propose the introduction of a new set of biometric parameters extracted from the components which result from the deconstruction of the voice into its glottal source estimate (close related to the phonation process and the involved organs, and therefore the physical characteristics of the speaker) and vocal tract estimate (close related to acoustic articulation and therefore to the spoken message). These biometric parameters constitute a complement to the classical MFCC extracted from the power spectral density of speech as a whole. In order to check the validity of this proposal we establish different practical scenarios, using different databases, so we can conclude that a GDEBP generates a more accurate description of speakers than classical approaches based on gender-independent MFCC. Specifically, we propose scenarios based on text-constrain and text-independent test using HESPERIA and ALBAYZIN databases. This work is also completed with the participation in two international speaker recognition evaluations: NIST SRE (2010 and 2012) and MOBIO 2013, with diverse results. In the first case, due to the nature of the NIST databases, we obtain results closed to state-of-the-art although confirming our hypothesis, whereas in the MOBIO SRE we obtain the best simple system performance for female speakers. Although the study of classification systems is beyond the scope of this thesis, we found it necessary to analise the performance of different classification systems, in order to verify the effect of them on the propose parameterisation. In particular, we have addressed the use of speaker recognition systems based on the GMM-UBM paradigm, supervectors and i-vectors. The presented results confirm that the selection of a set of parameters that allows for a more accurate description of the speakers is as important as the selection of the classification method used by the biometric system. In this sense, the proposed parameterisation constitutes a step forward in improving speaker recognition systems, since even when using relatively simple classification systems, really competitive recognition rates are achieved.
Resumo:
This paper presents new techniques with relevant improvements added to the primary system presented by our group to the Albayzin 2012 LRE competition, where the use of any additional corpora for training or optimizing the models was forbidden. In this work, we present the incorporation of an additional phonotactic subsystem based on the use of phone log-likelihood ratio features (PLLR) extracted from different phonotactic recognizers that contributes to improve the accuracy of the system in a 21.4% in terms of Cavg (we also present results for the official metric during the evaluation, Fact). We will present how using these features at the phone state level provides significant improvements, when used together with dimensionality reduction techniques, especially PCA. We have also experimented with applying alternative SDC-like configurations on these PLLR features with additional improvements. Also, we will describe some modifications to the MFCC-based acoustic i-vector system which have also contributed to additional improvements. The final fused system outperformed the baseline in 27.4% in Cavg.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The speech characteristics, oromotor function and speech intelligibility of a group of children treated for cerebellar tumour (CT) was investigated perceptually. Assessment of these areas was performed on 11 children treated for CT with dysarthric speech as well as 21 non-neurologically impaired controls matched for age and sex to obtain a comprehensive perceptual profile of their speech and oromotor mechanism. Contributing to the perception of dysarthria were a number of deviant speech dimensions including imprecision of consonants, hoarseness and decreased pitch variation, as well as a reduction in overall speech intelligibility for both sentences and connected speech. Oromotor assessment revealed deficits in lip, tongue and laryngeal function, particularly relating to deficits in timing and coordination of movements. The most salient features of the dysarthria seen in children treated for CT were the mild nature of the speech disorder and clustering of speech deficits in the prosodic, phonatory and articulatory aspects of speech production.