872 resultados para solid-state NMR
Resumo:
In this work supramolecular organic systems based on rigid pi-conjugated building blocks and flexible side chains were studied via solid-state NMR spectroscopy. Specifically, these studies focussed on phenylene ethynylene based macrocycles, polymer systems including polythiophenes, and rod-coil copolymers of oligo(p-benzamide) and poly(ethylene glycol). All systems were studied in terms of the local order and mobility. The central topic of this dissertation was to elucidate the role of the flexible side chains in interplay of different non-covalent interactions, like pi-pi-stacking and hydrogen bonding.Combining the results of this work, it can be concluded that the ratio of the rigid block and the attached alkyl side chains can be crucial for the design of an ordered pi-conjugated supramolecular system. Through alkyl side chains, it is also possible to introduce liquid-crystalline phases in the system, which can foster the local order of the system. Moreover in the studied system longer, unbranched alkyl side chains are better suited to stabilize the corresponding aggregation than shorter, branched ones.The combination of non-covalent interactions such as pi-pi-stacking and hydrogen bonding play an important role for structure formation. However, the effect of pi-pi-stacking interaction is much weaker than the effect of hydrogen bonding and is only observed in systems with a suitable local order. Hence, they are often not strong enough to control the local order. In contrast, hydrogen bonds predominantly influence the structural organization and packing. In comparison the size of the alkyl side chains is only of minor importance. The suppression of certain hydrogen bonds can lead to completely different structures and can induce a specific aggregation behavior. Thus, for the design of a supramolecular ordered system the presence of hydrogen bonding efficiently stabilizes the corresponding structure, but the ratio of hydrogen bond forming groups should be kept low to be able to influence the structure selectively.
Resumo:
Complete resolution of the amide resonances in a three-dimensional solid-state NMR correlation spectrum of a uniformly 15N-labeled membrane protein in oriented phospholipid bilayers is demonstrated. The three orientationally dependent frequencies, 1H chemical shift, 1H–15N dipolar coupling, and 15N chemical shift, associated with each amide resonance are responsible for resolution among resonances and provide sufficient angular restrictions for protein structure determination. Because the protein is completely immobilized by the phospholipids on the relevant NMR time scales (10 kHz), the linewidths will not degrade in the spectra of larger proteins. Therefore, these results demonstrate that solid-state NMR experiments can overcome the correlation time problem and extend the range of proteins that can have their structures determined by NMR spectroscopy to include uniformly 15N-labeled membrane proteins in phospholipid bilayers.
Resumo:
Senile plaques associated with Alzheimer's disease contain deposits of fibrils formed by 39- to 43-residue β-amyloid peptides with possible neurotoxic effects. X-ray diffraction measurements on oriented fibril bundles have indicated an extended β-sheet structure for Alzheimer's β-amyloid fibrils and other amyloid fibrils, but the supramolecular organization of the β-sheets and other structural details are not well established because of the intrinsically noncrystalline, insoluble nature of amyloid fibrils. Here we report solid-state NMR measurements, using a multiple quantum (MQ) 13C NMR technique, that probe the β-sheet organization in fibrils formed by the full-length, 40-residue β-amyloid peptide (Aβ1–40). Although an antiparallel β-sheet organization often is assumed and is invoked in recent structural models for full-length β-amyloid fibrils, the MQNMR data indicate an in-register, parallel organization. This work provides site-specific, atomic-level structural constraints on full-length β-amyloid fibrils and applies MQNMR to a significant problem in structural biology.
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
The aim of this work presented here is the characterization of structure and dynamics of different types of supramolecular systems by advanced NMR spectroscopy. One of the characteristic features of NMR spectroscopy is based on its high selectivity. Thus, it is desirable to exploit this technique for studying structure and dynamics of large supramolecular systems without isotopic enrichment. The observed resonance frequencies are not only isotope specific but also influenced by local fields, in particular by the distribution of electron density around the investigated nucleus. Barbituric acid are well known for forming strongly hydrogen-bonded complexes with variety of adenine derivatives. The prototropic tautomerism of this material facilitates an adjustment to complementary bases containing a DDA(A = hydrogen bond acceptor site, D = hydrogen bond donor site) or ADA sequences, thereby yielding strongly hydrogen-bonded complexes. In this contribution solid-state structures of the enolizable chromophor "1-n-butyl-5-(4-nitrophenyl)-barbituric acid" that features adjustable hydrogen-bonding properties and the molecular assemblies with three different strength of bases (Proton sponge, adenine mimetic 2,6-diaminopyridine (DAP) and 2,6-diacetamidopyridine (DAC)) are studied. Diffusion NMR spectroscopy gives information over such interactions and has become the method of choice for measuring the diffusion coefficient, thereby reflecting the effective size and shape of a molecular species. In this work the investigation of supramolecular aggregates in solution state by means of DOSY NMR techniques are performed. The underlying principles of DOSY NMR experiment are discussed briefly and more importantly two applications demonstrating the potential of this method are focused on. Calix[n]arenes have gained a rather prominent position, both as host materials and as platforms to design specific receptors. In this respect, several different capsular contents of tetra urea calix[4]arenes (benzene, benzene-d6, 1-fluorobenzene, 1-fluorobenzene-d5, 1,4-difluorobenzene, and cobaltocenium) are studied by solid state NMR spectroscopy. In the solid state, the study of the interaction between tetra urea calix[4]arenes and guest is simplified by the fact that the guests molecule remains complexed and positioned within the cavity, thus allowing a more direct investigation of the host-guest interactions.
Resumo:
Eine zielgerichtete Steuerung und Durchführung von organischen Festkörperreaktionen wird unter anderem durch genaue Kenntnis von Packungseffekten ermöglicht. Im Rahmen dieser Arbeit konnte durch den kombinierten Einsatz von Einkristallröntgenanalyse und hochauf-lösender Festkörper-NMR an ausgewählten Beispielen ein tieferes Verständnis und Einblicke in die Reaktionsmechanismen von organischen Festkörperreaktionen auf molekularer Ebene gewonnen werden. So konnten bei der topotaktischen [2+2] Photodimerisierung von Zimt-säure Intermediate isoliert und strukturell charakterisiert werden. Insbesondere anhand statischer Deuteronen- und 13C-CPMAS NMR Spektren konnten eindeutig dynamische Wasserstoffbrücken nachgewiesen werden, die transient die Zentrosymmetrie des Reaktions-produkts aufheben. Ein weiterer Nachweis gelang daraufhin mittels Hochtemperatur-Röntgen-untersuchung, sodass der scheinbare Widerspruch von NMR- und Röntgenuntersuchungen gelöst werden konnte. Eine Veresterung der Zimtsäure entfernt diese Wasserstoffbrücken und erhält somit die Zentrosymmetrie des Photodimers. Weiterhin werden Ansätze zur Strukturkontrolle in Festkörpern basierend auf der molekularen Erkennung des Hydroxyl-Pyridin (OH-N) Heterosynthon in Co-Kristallen beschrieben, wobei vor allem die Stabilität des Synthons in Gegenwart funktioneller Gruppen mit Möglichkeit zu kompetetiver Wasserstoffbrückenbildung festgestellt wurde. Durch Erweiterung dieses Ansatzes wurde die molekulare Spezifität des Hydroxyl-Pyridin (OH-N) Heterosynthons bei gleichzeitiger Co-Kristallisation mit mehreren Komponenten erfolgreich aufgezeigt. Am Beispiel der Co-Kristallisation von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res) in Gegenwart von trans-1,2-bis(4-pyridyl)ethan (bpet) konnten Zwischenprodukte der Fest-körperreaktionen und neuartige Polymorphe isoliert werden, wobei eine lückenlose Aufklärung des Reaktionswegs mittels Röntgenanalyse gelang. Dabei zeigte sich, dass das Templat Resorcinol aus den Zielverbindungen entfernbar ist. Ferner gelang die Durchführung einer seltenen, nicht-idealen Einkristall-Einkristall-Umlagerung von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res). In allen Fällen konnten die Fragen zur Struktur und Dynamik der untersuchten Verbindungen nur durch gemeinsame Nutzung von Röntgenanalyse und NMR-Spektroskopie bei vergleichbaren Temperaturen eindeutig und umfassend geklärt werden.
Resumo:
Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.