999 resultados para sodium depletion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging wildlife disease white-nose syndrome is causing widespread mortality in hibernating North American bats. White-nose syndrome occurs when the fungus Geomyces destructans infects the living skin of bats during hibernation, but links between infection and mortality are underexplored. We analyzed blood from hibernating bats and compared blood electrolyte levels to wing damage caused by the fungus. Sodium and chloride tended to decrease as wing damage increased in severity. Depletion of these electrolytes suggests that infected bats may become hypotonically dehydrated during winter. Although bats regularly arouse from hibernation to drink during winter, water available in hibernacula may not contain sufficient electrolytes to offset winter losses caused by disease. Damage to bat wings from G. destructans may cause life-threatening electrolyte imbalances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium/hydrogen exchangers (NHEs) are ubiquitous ion transporters that serve multiple cell functions. We have studied two mammalian isoforms, NHE1 (ubiquitous) and NHE3 (epithelial-specific), by measuring extracellular proton (H+) gradients during whole-cell patch clamp with perfusion of the cell interior. Maximal Na(+)-dependent H+ fluxes (JH+) are equivalent to currents >20 pA for NHE1 in Chinese hamster ovary fibroblasts, >200 pA for NHE1 in guinea pig ventricular myocytes, and 5-10 pA for NHE3 in opossum kidney cells. The fluxes are blocked by an NHE inhibitor, ethylisopropylamiloride, and are absent in NHE-deficient AP-1 cells. NHE1 activity is stable with perfusion of nonhydrolyzable ATP [adenosine 5'-(beta,gamma-imido)triphosphate], is abolished by ATP depletion (2 deoxy-D-glucose with oligomycin or perfusion of apyrase), can be restored with phosphatidylinositol 4,5-bisphosphate, and is unaffected by actin cytoskeleton disruption (latrunculin or pipette perfusion of gelsolin). NHE3 (but not NHE1) is reversibly activated by phosphatidylinositol 3,4,5-trisphosphate. Both NHE1 and NHE3 activities are disrupted in giant patches during gigaohm seal formation. NHE1 (but not NHE3) is reversibly activated by cell shrinkage, even at neutral cytoplasmic pH without ATP, and inhibited by cell swelling. NHE1 in Chinese hamster ovary fibroblasts (but not NHE3 in opossum kidney cells) is inhibited by agents that thin the membrane (L-alpha-lysophosphatidylcholine and octyl-beta-D-glucopyranoside) and activated by cholesterol enrichment, which thickens membranes. Expressed in AP-1 cells, however, NHE1 is insensitive to these agents but remains sensitive to volume changes. Thus, changes of hydrophobic mismatch can modulate NHE1 but do not underlie its volume sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound catena-poly[aqua-mu3-2-nitrocinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitrocinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octahedral NaO6 centres comprising three facially-related monodentate carboxylate O-atom donors from separate ligands (all bridging)[Na-O, 2.4370(13)-2.5046(13)A] and three water molecules (two bridging, one monodentate) [Na-O, 2.3782(13)-2.4404(17)A]. The structure is also stabilized by intra-chain water-O-H...O(carboxylate) and O-H...O(nitro) hydrogen bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic and controlled rate thermal analysis (CRTA) has been used to characterise alunites of formula [M(Al)3(SO4)2(OH)6 ] where M+ is the cations K+, Na+ or NH4+. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Interdialytic weight gain (IDWG) can be reduced by lowering the dialysate sodium concentration ([Na]) in haemodialysis patients. It has been assumed that this is because thirst is reduced, although this has been difficult to prove. We compared thirst patterns in stable haemodialysis patients with high and low IDWG using a novel technique and compared the effect of low sodium dialysis (LSD) with normal sodium dialysis (NSD). Methods Eight patients with initial high IDWG and seven with low IDWG completed hourly visual analogue ratings of thirst using a modified palmtop computer during the dialysis day and the interdialytic day. The dialysate [Na] was progressively reduced by up to 5 mmol/l over five treatments. Dialysis continued at the lowest attained [Na] for 2 weeks and the measurements were repeated. The dialysate [Na] then returned to baseline and the process was repeated. Results Baseline interdialytic day mean thirst was higher than the dialysis day mean for the high IDWG group (49.9±14.0 vs 36.2±16.6) and higher than the low weight gain group (49.9±14.0 vs 34.1±14.6). This trend persisted on LSD, but there was a pronounced increase in post-dialysis thirst scores for both groups (high IDWG: 46±13 vs 30±21; low IDWG: 48±24 vs 33±18). The high IDWG group demonstrated lower IDWG during LSD than NSD (2.23±0.98 vs 2.86±0.38 kg; P<0.05). Conclusions Our results indicate that patients with high IDWG experience more intense feelings of thirst on the interdialytic day. LSD reduces their IDWG, but paradoxically increases thirst in the immediate post-dialysis period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium niobates doped with different amount of tantalum (TaV) were prepared via thermal reaction process. It was found pure nanofibril and bar-like solids can be obtained when tantalum was introduced into the reaction system. For the well-crystallized fibril solids, the Na+ ions are difficult to be exchanged, and the radioactive ions such as Sr2+ and Ra2+ ions just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (Kd)`. However, the bar-like solids are poorly-crystallized and have lots of exchangeable Na+ ions. They are able to remove highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ ions. Even in the presence of lots of Na+ ions, they also have higher Kd. More importantly, such sorption finally intelligently triggers considerable collapse of the structure, resulting in the entrapment of the toxic bivalent cations permanently in the solids so that they can be safely disposed. This study highlights new opportunities for the preparation of Nb-based adsorbents to efficiently remove the toxic radioactive ions from contaminated water.