993 resultados para small-aperture optics
Resumo:
There has been a low level of interest in peripheral aberrations and corresponding image quality for over 200 years. Most work has been concerned with the second-order aberrations of defocus and astigmatism that can be corrected with conventional lenses. Studies have found high levels of aberration, often amounting to several dioptres, even in eyes with only small central defocus and astigmatism. My investigations have contributed to understanding shape changes in the eye with increases in myopia, changes in eye optics with ageing, and how surgical interventions intended to correct central refractive errors have unintended effects on peripheral optics. My research group has measured peripheral second- and higher-order aberrations over a 42° horizontal × 32° vertical diameter visual field. There is substantial variation in individual aberrations with age and pathology. While the higher-order aberrations in the periphery are usually small compared with second-order aberrations, they can be substantial and change considerably after refractive surgery. The thrust of my research in the next few years is to understand more about the peripheral aberrations of the human eye, to measure visual performance in the periphery and determine whether this can be improved by adaptive optics correction, to use measurements of peripheral aberrations to learn more about the optics of the eye and in particular the gradient index structure of the lens, and to investigate ways of increasing the size of the field of good retinal image quality.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A study is made of solutions of the macroscopic Maxwell equations in nonlinear media. Both nonlinear and dispersive terms are responsible for effects that are not taken into account in the geometrical optics approximation. The nonlinear terms can, depending on the nature of the nonlinearity, cause plane waves to focus when the amplitude varies across the wavefront. The dispersive terms prevent the singularities that nonlinearity alone would produce. Solutions are found which de scribe periodic plane waves in fully nonlinear media. Equations describing the evolution of the amplitude, frequency and wave number are generated by means of averaged Lagrangian techniques. The equations are solved for near linear media to produce the form of focusing waves which develop a singularity at the focal point. When higher dispersion is included nonlinear and dispersive effects can balance and one finds amplitude profiles that propagate with straight rays.
Resumo:
The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two.
In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored.
Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed and, in terms of an equivalent photon number signal level, are found to correspond to an internal noise level of only 6 and 4 times 10x^-3 quanta, respectively.
We begin by developing the requisite theoretical background to describe the system. A significant amount of time is then spent describing the fabrication of these silicon nanobeams, with an emphasis on understanding the specifics and motivation. The experimental demonstration of wavelength conversion is then described and analyzed. It is determined that the method of getting photons into the cavity and collected from the cavity is a fundamental limiting factor in the overall efficiency. Finally, a new coupling scheme is designed, fabricated, and tested that provides a means of coupling greater than 90% of photons into and out of the cavity, addressing one of the largest obstacles with the initial wavelength conversion experiment.
Resumo:
The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.
Resumo:
We propose an optical apparatus enabling the measurement of spherical power, cylindrical power, and optical center coordinates of ophthalmic lenses. The main advantage of this new focimeter is to provide a full bidimensional mapping of the characteristics of ophthalmic glasses. This is made possible thanks to the use of a large-area and high-resolution position-sensitive detector. We describe the measurement principle and present some typical mappings, particularly for progressive lenses. We then discuss the advantages in terms of speed and versatility of such a focimeter for the measurement of complex lens mappings. (C) 2002 Optical Society of America.
Resumo:
A new type of wave-front analysis method for the collimation testing of laser beams is proposed. A concept of wave-front height is defined, and, on this basis, the wave-front analysis method of circular aperture sampling is introduced. The wave-front height of the tested noncollimated wave can be estimated from the distance between two identical fiducial diffraction planes of the sampled wave, and then the divergence is determined. The design is detailed, and the experiment is demonstrated. The principle and experiment results of the method are presented. Owing to the simplicity of the method and its low cost, it is a promising method for checking the collimation of a laser beam with a large divergence. © 2005 Optical Society of America.
Resumo:
对高斯光束在硬边孔径限制下的衍射进行了详细的理论研究,就不同口径的圆孔限制下高斯光束在菲涅耳衍射区和夫琅禾费衍射区的分布进行了理论分析,从而得到了孔径受限高斯光束的横向以及轴向的衍射公式,进而对高斯光束在不同衍射区域内衍射光场分布形状随孔径尺寸变化时的演化规律进行了数值计算,并对小口径光阑受限的高斯光束的衍射与平行光经同尺寸光阑的衍射进行了比较。结果表明在较小口径下,两者的分布基本一致。得到的孔径光阑限制下高斯光束的传输规律为高斯光束在自由空间光通信和光学超分辨中的应用提供了理论基础。
Resumo:
Computational imaging is flourishing thanks to the recent advancement in array photodetectors and image processing algorithms. This thesis presents Fourier ptychography, which is a computational imaging technique implemented in microscopy to break the limit of conventional optics. With the implementation of Fourier ptychography, the resolution of the imaging system can surpass the diffraction limit of the objective lens's numerical aperture; the quantitative phase information of a sample can be reconstructed from intensity-only measurements; and the aberration of a microscope system can be characterized and computationally corrected. This computational microscopy technique enhances the performance of conventional optical systems and expands the scope of their applications.
Resumo:
An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices. © 2011 Optical Society of America.
Resumo:
The thermal and chemical stabilities of Mo/Si multilayer structure used in Bragg-Fresnel optics were studied to get optimal technological parameters of pattern generation. Mo/Si multilayers were annealed at temperature ranging from 360 to 770 K, treated with acetone and 5 parts per thousand NaOH solution, and characterized by small-angle x-ray diffraction technique as well as x-ray photoelectron spectroscopy, and Olympus microscopy.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
We apply a coded aperture snapshot spectral imager (CASSI) to fluorescence microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of a three-dimensional (3D) spectral data cube. We minimize a convex quadratic function with total variation (TV) constraints for data cube estimation from the 2D snapshot. We adapt the TV minimization algorithm for direct fluorescent bead identification from CASSI measurements by combining a priori knowledge of the spectra associated with each bead type. Our proposed method creates a 2D bead identity image. Simulated fluorescence CASSI measurements are used to evaluate the behavior of the algorithm. We also record real CASSI measurements of a ten bead type fluorescence scene and create a 2D bead identity map. A baseline image from filtered-array imaging system verifies CASSI's 2D bead identity map.