961 resultados para skull tumor
Resumo:
Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.
Resumo:
The migration of three human prostate tumor epithelial cell lines (TSU-pr1, PC-3, DU-145) in response to secreted protein from a human prostate stromal cell line was investigated by using the modified blind-well Boyden chamber assay. Migrated cells were quantified by spectrophotometrically measuring the concentration of crystal violet stain extracted from their nuclei. Cell number was correlated linearly with the concentration of extracted crystal violet stain. All three tumor cell lines showed intrinsic migratory ability in the absence of chemoattractants, such that approximately 1-7% of plated cells migrated across the filter of the Boyden chambers during a 5-h incubation period. Prostate tumor cell migration was significantly enhanced (3-13-fold) in response to stromal cell secretory protein in a dose-dependent manner, whereas bovine serum albumin had no effect on stimulating tumor cell migration. Immunoprecipitation of the stromal cell secreted protein with a nerve growth factor antibody partially and significantly reduced its stimulatory activity for tumor cell migration. A Zigmond-Hirsch matrix assay of tumor cell migration in response to various concentration gradients of stromal cell secreted protein demonstrated both chemotaxis and chemokinesis by all three cell lines. These results are consistent with the stromal cell secretory protein stimulation of chemokinetic tumor cell migration through the capsule of the prostate. Outside of the prostate gland metastasis of tumor cells may occur by chemotaxis to preferential sites containing chemoattractants similar to or related to maintenance factors that can substitute for components of stromal cell secretory protein.
Resumo:
Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.
Resumo:
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.
Resumo:
Basement membranes serve as significant barriers to the passage of tumor cells but ones which metastatic cells can pass. This involves the production of a cascade of proteases leading to the activation of a specific collagenase that degrades the unique collagen network in basement membrane. Breast cancer cells, when estrogen dependent, show a requirement for estrogen for invasive activity. However, when these cells progress to an estrogen independent state and increased malignancy, they express an invasive phenotype constitutively. Studies with various anti-estrogens suggest that these responses are mediated via the estrogen receptor. Anti-estrogens lacking agonist activity suppress invasiveness as well as growth of the breast cancer cells.
Resumo:
Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
Membrane type 1 metalloprotease (MT1-MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro-MMP2. We investigated the effects of MT1-MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1-MMP or MMP-2. MT1-MMP and MMP-2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1-MMP 1) were able to activate endogenous or exogenous pro-MMP-2, 2) displayed an enhanced in vitro invasiveness through matrigel-coated filters independent of MMP-2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1-MMP regardless of MMP-2 expression levels, suggesting that the production of MMP-2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1-MMP-producing cells was associated with an up-regulation of VEGF expression. These results emphasize the importance of MT1-MMP during tumor angiogenesis and open new opportunities for the development of antiangiogenic strategies combining inhibitors of MT1-MMP and VEGF antagonists. - Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression.
Resumo:
Human ovarian carcinoma samples were orthotopically implanted into SCID mice to investigate the contribution of matrix metalloproteases (MMPs) to the spread of ovarian tumors. Mice were inoculated with patient tumor samples, and developed ovarian tumors over a 16-week period with metastasis occurring in some mice. Species-specific quantitative RT-PCR was used to identify the source of tumor-associated MMPs. Membrane-type (MT)1-MMP mRNA was significantly increased in high-grade tumors, tumors with evidence of serosal involvement, and tumors in which distant metastases were detected. The increase in MT1-MMP expression was predominantly from the human tumor cells, with a minor contribution from the mouse ovarian stroma. Neither human nor mouse MT2-MMP were correlated with tumor progression and MT3-MMP levels were negligible. While tumor cells did not produce significant amounts of MMP-2 or MMP-9, the presence of tumor was associated with increased levels of MMP-2 expression by mouse ovarian stroma. Stromal-derived MT1-MMP was greater in large tumors and was associated with stromal MMP-2 expression but neither was significantly linked with metastasis. These studies indicate that tumor-derived MT1-MMP, more so than other gelatinolytic MMPs, is strongly linked to aggressive tumor behavior. This orthotopic model of human ovarian carcinoma is appropriate for studying ovarian tumor progression, and will be valuable in the further investigation of the metastatic process.
Resumo:
Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase-PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced 'mesenchymal gene' expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.
Resumo:
Epithelial-to-mesenchymal transition (EMT) phenomena endow epithelial cells with enhanced migratory and invasive potential, and as such, have been implicated in many physiological and pathological processes requiring cell migration/invasion. Although their involvement in the metastatic cascade is still a subject of debate, data are accumulating to demonstrate the existence of EMT phenotypes in primary human tumors, describe enhanced metastatic potential of EMT derivatives in animal models, and report EMT attributes in circulating tumor cells (CTCs). The relationships between EMT and CTCs remain largely unexplored, and we review here in vitro and in vivo data supporting a putative role of EMT processes in CTC generation and survival.
Resumo:
Bone sialoprotein (BSP) and osteopontin (OPN) are secreted glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and are expressed predominantly in bone. The RGD tripeptide is commonly present in extracellular attachment proteins and has been shown to mediate the attachment of osteosarcoma cells and osteoclasts. To determine the origin and incidence of BSP and OPN mRNA expression in primary tumor, a cohort of archival, primary invasive breast carcinoma specimens was analyzed. BSP transcripts were detected in 65% and OPN transcripts in 77% of breast cancers examined. In general, BSP and OPN transcripts were detected in both invasive and in situ carcinoma components. The transcripts were not detected in surrounding stromal cells or in peritumoral macrophages. Despite its abundance in carcinomas, BSP expression was not detected in a panel of 11 human breast cancer cell lines (MCF-7, T47D, SK-Br-3, MDA-MB-453, MDA-MB- 231, MDA-MB-436, BT549, MCF-7(AOR), Hs578T, MDA-MB-435, and LCC15-MB) and OPN expression was detected only in two of these (MDA-MB-435 and LCC15-MB). To examine the possibility that expression of these genes was down-regulated in cell culture, several cell lines were grown as nude mouse xenografts in vivo; however, these tumors also failed to express BSP. OPN expression was identified in all cell lines grown as nude mouse xenografts. Our data suggest that in human primary breast tumors, the origin of BSP and OPN mRNA is predominantly the breast cancer cells and that expression of these transcripts is influenced by the tumor environment.
Resumo:
The second of the Hermelin Brain Tumor Center Symposia was held once again at Henry Ford Hospital in Detroit, Michigan on October 24th and 25th, 2003. A public conference was held on the 24th while a closed-door session took place on the 25th. The purpose of these symposia is to bring together experts in a particular field of study with the aim to share information with each other and the public, but then to meet privately to present novel data, hold discussions, and share concepts. While the interaction is intended to benefit all involved, the incentive is the expectation that the shared information will aid researchers at the Hermelin Brain Tumor Center in their quest to identify potential therapeutic targets and explore translational therapeutic strategies for the treatment of patients suffering nervous system tumors...