935 resultados para signalling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permanent mammalian kidney (metanephros) develops as a result of complex reciprocal tissue interactions between a ureteric epithelium and the renal mesenchyme. The overall goal of the research in this thesis was to gain data that will eventually help in elucidating the formation of congenital renal malformations. The experiments in my thesis aimed to reveal the mechanisms by which Notch, Wnt and GDNF/Ret signalling pathways regulate the development of functional kidney. The function of Notch pathway was studied by a transgenic mouse model, where it was shown that overactivation of Notch signalling disturbs kidney development and alters the expression of Gdnf and Ret/GFRa1. This indicates that Notch signalling interplays with GDNF/Ret in the regulation of the primary ureteric budding and its subsequent branching. The data also suggested that strict spatio-temporal regulation of these two pathways is required for determination of ureteric tip-identity, which appeared to be crucial for the branch formation. The function of Wnt signalling in the ureteric morphogenesis was studied by in vivo and in vitro methods to show that a canonical pathway is required for ureteric branching. Stabilisation and deletion of the canonical pathway mediator, b-catenin specifically in the ureteric epithelium result in renal aplasia/hypodysplasia. These defects originate from severe blockage of ureteric branching due to the disrupted Ret signalling. Consequently, ureteric tip specific markers are lost and ureteric stalk identity is expanded throughout the whole epithelium. Thus, the data demonstrates that the Wnt/b-catenin pathway plays an essential role in the patterning and branching of the ureteric epithelium. A novel in vitro method was generated and utilised in nephron induction studies to reveal the mechanisms through which nephrogenesis is induced. Transient GSK3 inhibition results in stabilisation of b-catenin in the isolated renal mesenchyme, which efficiently triggers nephron formation. Also genetic stabilisation of b-catenin specifically in the mesenchyme results in spontaneous nephrogenesis. The results show that activation of the canonical Wnt pathway is sufficient to initiate nephrogenesis, and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes. Taken together, this thesis demonstrates Notch and Wnt signalling pathways as novel regulators of ureteric branching morphogenesis, and that activation of the canonical Wnt pathway is sufficient for nephron induction. The studies also indicate that the Notch and Wnt pathways cross-talk with GDNF/Ret signalling in the patterning of ureteric epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is among the major cancers and one of the leading causes of cancer-related deaths in Western societies. Its occurrence is strongly affected by environmental factors such as diet. Thus, for preventative strategies it is vitally important to understand the mechanisms that stimulate adenoma growth and development towards accelerated malignancy or, in contrast, attenuate them to remain in quiescence for periods as long as decades. The main objective of this study was to investigate whether diet is able to modulate β-catenin signalling related to the promotion or prevention of intestinal tumourigenesis in an animal model of colon cancer, the Min/+ mouse. A series of dietary experiments with Min/+ mice were performed where fructo-oligosaccharide inulin was used for tumour promotion and four berries, bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), cloudberry (Rubus chamaemorus) and white currant (Ribes x pallidum), were used for tumour prevention. The adenomas (Apc-/-) and surrounding normal-appearing mucosa (Apc+/-) were investigated separately due to their mutational and functional differences. Tumour promotive and preventive diets had opposite effects on β-catenin signalling in the adenomas that was related to the different adenoma growth effects of dietary inulin and berries. The levels of nuclear β-catenin and cyclin D1 combined with size of the adenomas in the treatment groups suggests that diets induced differences in the cancerous process. Adenomas progressing to malignant carcinomas are most likely found in the sub-groups having the highest levels of β-catenin. On the other hand, adenomas staying quiescent for a long period of time are most probably found in the cloudberry or white currant diet groups. The levels of membranous E-cadherin and β-catenin increased as the adenomas in the inulin diet group grew, which could be a result of the overall increase in the protein levels of the cell. Therefore, the increasing levels of membranous β-catenin in Min/+ mice adenomas would be undesirable, due to the simultaneous increase in oncogenic nuclear β-catenin. We propose that the decreased amount of membranous β-catenin in benign adenomas of berry groups also means a decrease in the nuclear pool of β-catenin. Tumour promotion, but not the tumour prevention, influenced β-catenin signalling already in the normal appearing mucosa. Inulin-induced tumour promotion was related to β-catenin signalling in Min/+ mice, and in WT mice changes were also visible. The preventative effects of berries in the initiation phase were not mediated by β-catenin signalling. Our results suggest that, in addition to the number, size, and growth rate of adenomatous polyps, the signalling pattern of the adenomas should be considered when evaluating preventative dietary strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of colon cancer is high in Western societies, and in Finland it is among the three most common cancer types in both females and males. Environmental factors, including diet, affect colon cancer development. During the last few years, a vast amount of new, functional foods have been introduced to the consumers. Several products are already available that are marketed as promoting intestinal health. To be able to reliably call a dietary compound a chemopreventive substance it is of fundamental importance to understand the mechanism by which it affects tumour formation and the integrity of the epithelial cells. In this thesis, three different dietary compounds were studied in an experimental model of colon cancer. Inulin is a non-digestible fibre found naturally in chicory roots, artichokes and onions, amongst others. Nowadays it is widely used as an added dietary fibre in several food products. Conjugated linoleic acid (CLA) is a conjugated form of the fatty acid linoleic acid. CLA is formed by bacterial fermentation of linoleic acid in the rumen of cows and other ruminants. Concomitantly, it can naturally be found in milk and meat of ruminants. White currant is a colourless berry low in phenolic compounds that are believed to prevent cancer formation. Contrary to what was expected, inulin and the conjugated linoleic acid isomer trans-10, cis-12, were tumour growth promoting dietary constituents when fed to Min mice. Both diets decreased the NF-kappaB levels in the mucosa, but physiological adenoma development did not affect NF-kappaB. Diet altered beta-catenin and p53 signalling in the adenomas, confirming their involvement in adenoma growth. White currant, on the other hand, was chemopreventive, despite its low contents of phenolic compounds. The chemopreventive effect was accompanied by increased p53 levels in the mucosa, and decreased beta-catenin and NF-kappaB levels in the adenoma. This could explain the reduced adenoma number and size. The results underline the importance of carefully testing new dietary compounds in different settings to reliably confirm their health benefits. In this study two compounds that are consumed and believed to add to our health proved to be cancer promotive. A berry with low phenolic contents, on the other hand, was chemopreventive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is common in men with very high mortality which is one of leading causes of cancer-related deaths in men. The main treatment approaches for metastasized prostate cancer are androgen deprivation and chemotherapeutic agents. Although there are initial responses to castration, the resistance to the treatment will eventually occur, leading to castration-resistant prostate cancer. The common chemotherapeutic agents for the treatment of prostate cancer are docetaxel and taxane but outcomes of using these drugs have not been satisfactory. Therefore, it is necessary to find better treatment approaches for prostate cancer and to search for compounds that are effective in prostate cancer prevention. Lycopene extracted from tomato and other fruits or plants such as Gac, watermelon, pink grapefruit, pink guava, red carrot and papaya has been shown to be effective on prostate cancer prevention and treatment. The advantage of the application of lycopene for its anti-prostate cancer activity is that lycopene can reach much higher concentration in prostate tissue than other tissues. In this review, the effect of lycopene on PI3K/Akt pathway is summarised, which could be one of major mechanisms for anti-cancer activity of lycopene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within central nervous system, the simple division of chemical synaptic transmission to depolarizing excitation mediated by glutamate and hyperpolarizing inhibition mediated by γ-amino butyric acid (GABA), is evidently an oversimplification. The GABAa receptor (GABAaR) mediated responses can be of opposite sign within a single resting cell, due to the compartmentalized distribution of cation chloride cotransporters (CCCs). The K+/Cl- cotransporter 2 (KCC2), member of the CCC family, promotes K+ fuelled Cl- extrusion and sets the reversal potential of GABA evoked anion currents typically slightly below the resting membrane potential. The interesting ionic plasticity property of GABAergic signalling emerges from the short-term and long-term alterations in the intraneuronal concentrations of GABAaR permeable anions (Cl- and HCO3-). The short-term effects arise rapidly (in the time scale of hundreds of milliseconds) and are due to the GABAaR activation dependent shifts in anion gradients, whereas the changes in expression, distribution and kinetic regulation of CCCs are underlying the long-term effects, which may take minutes or even hours to develop. In this Thesis, the differences in the reversal potential of GABAaR mediated responses between dopaminergic and GABAergic cell types, located in the substantia nigra, were shown to be attributable to the differences in the chloride extrusion mechanisms. The stronger inhibitory effect of GABA on GABAergic neurons was due to the cell type specific expression of KCC2 whereas the KCC2 was absent from dopaminergic neurons, leading to a less prominent inhibition brought by GABAaR activation. The levels of KCC2 protein exhibited activity dependent alterations in hippocampal pyramidal neurons. Intense neuronal activity, leading to a massive release of brain derived neurotrophic factor (BDNF) in vivo, or applications of tyrosine receptor kinase B (TrkB) agonists BDNF or neurotrophin-4 in vitro, were shown to down-regulate KCC2 protein levels which led to a reduction in the efficacy of Cl- extrusion. The GABAergic transmission is interestingly involved in an increase of extracellular K+ concentration. A substantial increase in interstitial K+ tends to depolarize the cell membrane. The effects that varying ion gradients had on the generation of biphasic GABAaR mediated responses were addressed, with particular emphasis on the novel idea that the K+/Cl- extrusion via KCC2 is accelerated in response to a rapid accumulation of intracellular Cl-. The KCC2 inhibitor furosemide produced a large reduction in the GABAaR dependent extracellular K+ transients. Thus, paradoxically, both the inefficient KCC2 activity (via increased intracellular Cl-) and efficient KCC2 activity (via increased extracellular K+) may promote excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary growth of plants is of pivotal importance in terrestrial ecosystems, providing a significant carbon sink in the form of wood. As plant biomass accumulation results largely from the cambial growth, it is surprising that quite little is known about the hormonal or genetic control of this important process in any plant species. The central aim of my thesis studies was to explore the function of cytokinin in the regulation of cambial development. Since their discovery as regulators of plant cell divisions, cytokinins have been assumed to participate in the control of cambial development. Evidence for this action was deduced from hormone treatment experiments, where exogenously applied cytokinin was shown to enhance cambial cell divisions in diverse plant organs and species. In my thesis work, the conservation of cytokinin signalling and homeostasis genes between a herbaceous plant, Arabidopsis, and a hardwood tree species, Populus trichocarpa. Presumably reflecting the ancient origin of cytokinin signalling system, the Populus genome contains orthologs for all Arabidopsis cytokinin signalling and homeostasis genes. Thus, genes belonging to five main families of isopentenyl transferases (IPTs), cytokinin oxidases (CKXs), two-component receptors, histidine containing phosphotransmitters (HPts) and response regulators (RRs) were identified from the Populus genome. Three subfamilies associated with cytokinin signal transduction, the CKI1-like family of two-component receptors, the AHP4-like HPts, and the ARR22-like atypical RRs, were significantly larger in Populus genome than in Arabidopsis. Potential contribution to the extensive secondary development of Populus by the members of these considerably expanded gene families will be discussed. Representatives of all cytokinin signal transduction elements were expressed in the Populus cambial zone, and most of the expressed genes appeared to be slightly more abundant on the phloem side of the meristem. The abundance of cytokinin related genes in the cambium emphasizes the important role of this hormone in the regulation of the extensive secondary growth characteristic of tree species. The function of the pseudo HPts in primary vascular development was studied in Arabidopsis root vasculature. It was demonstrated that the pseudo HPt AHP6 has a role in locally inhibiting cytokinin signalling in the protoxylem position in the Arabidopsis root, thus enabling differentiation of the protoxylem cell file. The possible role of pseudo HPts in cambial development will be discussed. The expression peak of cytokinin signalling genes in the tree cambial zone strongly indicates that cytokinin has a role in the regulation of this meristem function. To address whether cytokinin signalling is required for cambial activity, transgenic Populus trees with modified cytokinin signalling were produced. These trees were expressing a cytokinin catabolic gene from Arabidopsis, CYTOKININ OXIDASE 2, (AtCKX2) under the promoter of a Betula CYTOKININ RECEPTOR 1 (BpCRE1). The pBpCRE1::CKX2 transgenic Populus trees showed a reduced concentration of a biologically active cytokinin, correlating with their impaired cytokinin response. Furthermore, the radial growth of these trees was compromised, as illustrated by a smaller stem diameter than in wild-type trees of the same height. Moreover, the level of cambial cytokinin signalling was down-regulated in these thin-stemmed trees. The reduced signalling correlated with a decreased number of meristematic cambial cells, implicating cytokinin activity as a direct regulator of cambial cell division activity. Together, the results of my study indicate that cytokinins are major hormonal regulators required for cambial development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a complex neurological disorder with a well-documented genetic basis. Migraine is a product of allelic variation in genes of neurological, vascular and hormonal origin interacting with environmental triggers. Presentation can include attacks of head pain with symptoms of nausea, emesis, photophobia, phonophobia, and occasionally, visual sensory disturbances, known as aura. Migraine pain is difficult to ignore, associated with a deep sense of malaise and manifests as a throbbing, pulsatile headache, localized to one side of the head that intensifies with physical activity and that can last from 4-72 hours. Migraine is diagnosed according to criteria developed by the International Headache Society (IHS) and is subdivided into two main types based on the occurrence of aura symptoms that may be present in the early stages of the headache: migraine with aura (MA) and migraine without aura (MO). The majority (about 70%) of migraineurs are diagnosed with the MO subtype whilst the remaining 30% experience MA accompanied by neurological symptoms that manifest as fully reversible, visual, sensory and/or dysphasic speech disturbances in conjunction with their headache. Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) and over-excitation of glutamate receptors is regarded as a contributing factor, through various mechanisms, to the pathology of migraine. In this chapter we present an overview of the pathophysiology and co-morbidity of migraine with other psychiatric disorders and discuss the role of the glutamatergic system in migraine, its molecular components as potential drug targets, in addition to the current treatments and progress of modulators of glutamatergic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are emerging data to suggest that microRNAs (miRNAs) have significant roles in regulating the function of normal cells and cancer stem cells (CSCs). This review aims to analyse the roles of miRNAs in the regulation of colon CSCs through their interaction with various signalling pathways. Studies showed a large number of miRNAs that are reported to be deregulated in colon CSCs. However, few of the studies available were able to outline the function of miRNAs in colon CSCs and uncover their signalling pathways. From those miRNAs, which are better described, miR-21 followed by miR-34, miR-200 and miR-215 are the most reported miRNAs to have roles in colon CSC regulation. In particular, miRNAs have been reported to regulate the stemness features of colon CSCs mainly via Wnt/B-catenin and Notch signalling pathways. Additionally, miRNAs have been reported to act on processes involving CSCs through cell cycle regulation genes and epithelial-mesenchymal transition. The relative paucity of data available on the significance of miRNAs in CSCs means that new studies will be of great importance to determine their roles and to identify the signalling pathways through which they operate. Such studies may in future guide further research to target these genes for more effective cancer treatment. miRNAs were shown to regulate the function of cancer stem cells in large bowel cancer by targeting a few key signalling pathways in cells.