982 resultados para sex cord stromal tumor
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.
Resumo:
BACKGROUND: Broccoli consumption has been associated with a reduced risk of prostate cancer. Isothiocyanates (ITCs) derived from glucosinolates that accumulate in broccoli are dietary compounds that may mediate these health effects. Sulforaphane (SF, 4-methylsulphinylbutyl ITC) derives from heading broccoli (calabrese) and iberin (IB, 3-methylsulphinypropyl ITC) from sprouting broccoli. While there are many studies regarding the biological activity of SF, mainly undertaken with cancerous cells, there are few studies associated with IB. METHODS: Primary epithelial and stromal cells were derived from benign prostatic hyperplasia tissue. Affymetrix U133 Plus 2.0 whole genome arrays were used to compare global gene expression between these cells, and to quantify changes in gene expression following exposure to physiologically appropriate concentrations of SF and IB. Ontology and pathway analyses were used to interpret results. Changes in expression of a subset of genes were confirmed by real-time RT-PCR. RESULTS: Global gene expression profiling identified epithelial and stromal-specific gene expression profiles. SF induced more changes in epithelial cells, whereas IB was more effective in stromal cells. Although IB and SF induced different changes in gene expression in both epithelial and stromal cells, these were associated with similar pathways, such as cell cycle and detoxification. Both ITCs increased expression of PLAGL1, a tumor suppressor gene, in stromal cells and suppressed expression of the putative tumor promoting genes IFITM1, CSPG2, and VIM in epithelial cells. CONCLUSION: These data suggest that IB and SF both alter genes associated with cancer prevention, and IB should be investigated further as a potential chemopreventative agent.
Resumo:
Purpose The role played by the innate immune system in determining survival from non-small-cell lung cancer (NSCLC) is unclear. The aim of this study was to investigate the prognostic significance of macrophage and mast-cell infiltration in NSCLC. Methods We used immunohistochemistry to identify tryptase+ mast cells and CD68+ macrophages in the tumor stroma and tumor islets in 175 patients with surgically resected NSCLC. Results Macrophages were detected in both the tumor stroma and islets in all patients. Mast cells were detected in the stroma and islets in 99.4% and 68.5% of patients, respectively. Using multivariate Cox proportional hazards analysis, increasing tumor islet macrophage density (P < .001) and tumor islet/stromal macrophage ratio (P < .001) emerged as favorable independent prognostic indicators. In contrast, increasing stromal macrophage density was an independent predictor of reduced survival (P = .001). The presence of tumor islet mast cells (P = .018) and increasing islet/stromal mast-cell ratio (P = .032) were also favorable independent prognostic indicators. Macrophage islet density showed the strongest effect: 5-year survival was 52.9% in patients with an islet macrophage density greater than the median versus 7.7% when less than the median (P < .0001). In the same groups, respectively, median survival was 2,244 versus 334 days (P < .0001). Patients with a high islet macrophage density but incomplete resection survived markedly longer than patients with a low islet macrophage density but complete resection. Conclusion The tumor islet CD68+ macrophage density is a powerful independent predictor of survival from surgically resected NSCLC. The biologic explanation for this and its implications for the use of adjunctive treatment requires further study. © 2005 by American Society of Clinical Oncology.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.
Resumo:
Bone sialoprotein (BSP) and osteopontin (OPN) are secreted glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and are expressed predominantly in bone. The RGD tripeptide is commonly present in extracellular attachment proteins and has been shown to mediate the attachment of osteosarcoma cells and osteoclasts. To determine the origin and incidence of BSP and OPN mRNA expression in primary tumor, a cohort of archival, primary invasive breast carcinoma specimens was analyzed. BSP transcripts were detected in 65% and OPN transcripts in 77% of breast cancers examined. In general, BSP and OPN transcripts were detected in both invasive and in situ carcinoma components. The transcripts were not detected in surrounding stromal cells or in peritumoral macrophages. Despite its abundance in carcinomas, BSP expression was not detected in a panel of 11 human breast cancer cell lines (MCF-7, T47D, SK-Br-3, MDA-MB-453, MDA-MB- 231, MDA-MB-436, BT549, MCF-7(AOR), Hs578T, MDA-MB-435, and LCC15-MB) and OPN expression was detected only in two of these (MDA-MB-435 and LCC15-MB). To examine the possibility that expression of these genes was down-regulated in cell culture, several cell lines were grown as nude mouse xenografts in vivo; however, these tumors also failed to express BSP. OPN expression was identified in all cell lines grown as nude mouse xenografts. Our data suggest that in human primary breast tumors, the origin of BSP and OPN mRNA is predominantly the breast cancer cells and that expression of these transcripts is influenced by the tumor environment.
Resumo:
Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.
Resumo:
Kasvainten, ajatellaan syntyvän yksittäisen solun perimän mutaatioista, jonka seurauksena tuon solun kasvu häiriintyy. Ruoansulatuskanavan polyyppien syntyä käytetään usein mallina siitä, miten nämä epiteelisoluun kerääntyvät mutaatiot aiheuttavat asteittain pahenevan kasvuhäiriön. Peutz–Jeghersin oireyhtymä (PJS) on perinnöllinen polypoosisyndrooma, jossa oireita aiheuttavat erityisesti maha-suolikanavan hamartomatoottiset polyypit. Noin puolella PJS potilaista havaitaan mutaatioita LKB1 kasvunrajoite geenissä. Hiirille joilta toinen Lkb1 alleeli on poistettu (Lkb1+/-) kehittyy PJS-tyypin maha-suolikanavan polyyppeja, joissa on epiteelin liikakasvun lisäksi merkittävä sileälihaskomponentti, aivan kuten PJS polyypeissa. Kuten myös muissa ruoansulatuskanavan polypooseissa, sekä PJS että hiirten polyypeissa Cyclo-oxygenaasi-2:n (COX-2) määrä on usein kohonnut. PJS-polyyppien kehittymisen molekulaarinen mekanismi on kuitenkin selvittämättä. Koska vain osa PJS potilaista kantaa LKB1 mutaatioita, mutaatiot jossakin toisessa lokuksessa saattaisivat selittää osan PJS tapauksista. Jotta PJS:n geneettinen tausta selviäisi, seulottiin kolmen LKB1:n kanssa interaktoivan proteiinin (BRG1, STRADα ja MO25α) geenit PJS potilaista joilla ei ole havaittu LKB1 mutaatioita. Yhdessäkään tutkituista geeneistä ei havaittu tautia aiheuttavia mutaatioita. Näiden kolmen geenin pois sulkeminen, ja uusien menetelmien ansiosta kasvanut havaittujen Lkb1 mutaatioden määrä viittaavat LKB1:n olevan useimpien PJS tapausten taustalla. COX-2:n estäjien käyttö on tehokkaasti vähentänyt polyyppien määrää familiaarisessa adenomatoottisessa polypoosissa. Tästä johtuen COX-2:n eston tehokkuutta tutkittiin PJS polypoosissa. PJS-tyypin polypoosin havaittin pienenevän merkittävästi Lkb1+/- hiirissä, joilta oli lisäksi poistettu toinen tai molemmat COX-2:n alleeleista. Lisäksi farmakologinen COX-2:n esto Celecoxib:lla vähensi polypoosia tehokkaasti. Näin ollen COX-2:n eston tehokkuutta tutkittiin seuraavaksi PJS potilaissa. Kuuden kuukauden Celecoxib hoidon jälkeen polypoosin havaittiin vähentyneen merkittävästi osalla potilaista (2/6). Nämä tulokset osoittavat COX-2:n roolin PJS-polyyppien kehityksessä, ja viittaavat COX-2:n eston vähentävän polypoosia. Kasvunrajoitegeenin klassisen määritelmän mukaan kasvaimen kehitys vaatii perinnöllisen mutaation lisäksi geenin toisenkin alleelin mutaation, mutta PJS-polyyppien häiriintyneestä epiteelistä ei kuitenkaan systemaattisesti löydy toista LKB1:n mutaatiota. Havainto johti tutkimukseen, jossa selvitettiin voisiko LKB1:n kasvun rajoitus välittyäkin epäsuorasti tukikudokseksi ajatelluista sileälihassoluista. Tätä tutkittiin kehittämällä poistogeeninen hiirimalli jossa Lkb1 on mutatoitunut vain sileälihassoluissa. Näille hiirille kehittyi polyyppeja, jotka ovat kaikin tavoin PJS-polyyppien kaltaisia. Lkb1:n menettäneiden solujen havaittiin tuottavan vähemmän transformoivaa kasvutekijä beetaa (TGFß), joka aiheutti solujen välisen viestinnän heikentymisen ja mahdollisesti viereisten epiteelisolujen liikakasvun. Vastaava häiriö havaittiin myös PJS-potilaiden polyypeissa, mikä viittaa siihen, että potilaillakin sileälihassolujen häiriö on polyyppien taustalla. Havainto suuntaa täten hoitokohteiden etsintää ja osoittaa että LKB1 toimii kasvunrajoittajana epätyypillisellä tavalla pitäen naapurisolujen kasvun kurissa.
Resumo:
As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Well-known risk factors include tobacco smoking and alcohol consumption. Overall survival has improved, but is still low especially in developing countries. One reason for this is the often advanced stage of the disease at the time of diagnosis, but also lack of reliable prognostic tools to enable individualized patient treatment to improve outcome. To date, the TNM classification still serves as the best disease evaluation criterion, although it does not take into account the molecular basis of the tumor. The need for surrogate molecular markers for more accurate disease prediction has increased research interests in this field. We investigated the prevalence, physical status, and viral load of human papillomavirus (HPV) in HNSCC to determine the impact of HPV on head and neck carcinogenesis. The prevalence and genotyping of HPV were assessed with an SPF10 PCR microtiter plate-based hybridization assay (DEIA), followed by a line probe-based genotyping assay. More than half of the patients had HPV DNA in their tumor specimens. Oncogenic HPV-16 was the most common type, and coinfections with other oncogenic and benign associated types also existed. HPV-16 viral load was unevenly distributed among different tumor sites; the tonsils harbored significantly greater amounts of virus than other sites. Episomal location of HPV-16 was associated with large tumors, and both integrated and mixed forms of viral DNA were detected. In this series, we could not show that the presence of HPV DNA correlated with survival. In addition, we investigated the prevalence and genotype of HPV in laryngeal carcinoma patients in a prospective Nordic multicenter study based on fresh-frozen laryngeal tumor samples to determine whether the tumors were HPV-associated. These patients were also examined and interviewed at diagnosis for known risk factors, such as tobacco smoking and alcohol consumption, and for several other habituations to elucidate their effects on patient survival. HPV analysis was performed with the same protocols as in the first study. Only 4% of the specimens harbored HPV DNA. Heavy drinking was associated with poor survival. Heavy drinking patients were also younger than nonheavy drinkers and had a more advanced stage of disease at diagnosis. Heavy drinkers had worse oral hygiene than nonheavy drinkers; however, poor oral hygiene did not have prognostic significance. History of chronic laryngitis, gastroesophageal reflux disease, and orogenital sex contacts were rare in this series. To clarify why vocal cord carcinomas seldom metastasize, we determined tumor lymph vessel (LVD) and blood vessel (BVD) densities in HNSCC patients. We used a novel lymphatic vessel endothelial marker (LYVE-1 antibody) to locate the lymphatic vessels in HNSCC samples and CD31 to detect the blood microvessels. We found carcinomas of the vocal cords to harbor less lymphatic and blood microvessels than carcinomas arising from sites other than vocal cords. The lymphatic and blood microvessel densities did not correlate with tumor size. High BVD was strongly correlated with high LVD. Neither BVD nor LVD showed any association with survival in our series. The immune system plays an important role in tumorigenesis, as neoplastic cells have to escape the cytotoxic lymphocytes in order to survive. Several candidate HLA class II alleles have been reported to be prognostic in cervical carcinomas, an epithelial malignancy resembling HNSCC. These alleles may have an impact on head and neck carcinomas as well. We determined HLA-DRB1* and -DQB1* alleles in HNSCC patients. Healthy organ donors served as controls. The Inno-LiPA reverse dot-blot kit was used to identify alleles in patient samples. No single haplotype was found to be predictive of either the risk for head and neck cancer, or the clinical course of the disease. However, alleles observed to be prognostic in cervical carcinomas showed a similar tendency in our series. DRB1*03 was associated with node-negative disease at diagnosis. DRB1*08 and DRB1*13 were associated with early-stage disease; DRB1*04 had a lower risk for tumor relapse; and DQB1*03 and DQB1*0502 were more frequent in controls than in patients. However, these associations reached only borderline significance in our HNSCC patients.
Resumo:
Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.
Resumo:
Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing
Resumo:
Research has focused on in vitro expansion of bone marrow stromal cells with the aim of developing cell-based therapies or tissue-engineered constructs. There is debate over whether there is a reduction in stem cells/osteoprogenitors in the bone marrow compartment with increasing age. The aim of this study was to investigate patient factors that affect the progenitor pool in bone marrow samples. Six milliliters of marrow aspirate was obtained from the femoral canal of 38 primary hip replacement patients (aged 28-91). Outcome measures were total nucleated cell count, colony-forming efficiency, alkaline phosphatase expression, and expression of stem cell markers. There was a nonsignificant negative correlation between age and both colony-forming efficiency and stem cell marker expression. However, body mass index showed a positive, significant correlation with colony area and number in men-accounting for up to 75% of the variation. In conclusion, body mass index, not age, was highly predictive of the number of progenitors found in bone marrow, and this relationship was sex specific. These results may inform the clinician's treatment choice when considering bone marrow-based therapies. Further, it highlights the need to widen research into patient factors that affect the adult stem cell population beyond age and reinforces the need to consider sexes separately.
Resumo:
PURPOSE: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques.
METHODS AND MATERIALS: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions.
RESULTS: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk.
CONCLUSIONS: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.
Resumo:
Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP.