956 resultados para sequence variations
Resumo:
Neuropeptides are an important group of hormones mediating or modulating neuronal communication. Neuropeptides are especially abundant in evolutionarily "old" nervous systems, such as those of cnidarians, the lowest animal group having a nervous system. Cnidarians often have a life cycle including a polyp, a medusa, and a planula larva stage. Recently, a neuropeptide, < Glu-Gln-Pro-Gly-Leu-Trp-NH2, has been isolated from sea anemones that induces metamorphosis in a hydroid planula larva to become a hydropolyp [Leitz, T., Morand, K. & Mann, M. (1994) Dev. Biol. 163, 440-446]. Here, we have cloned the precursor protein for this metamorphosis-inducing neuropeptide from sea anemones. The precursor protein is 514-amino acid residues long and contains 10 copies of the immature, authentic neuropeptide (Gln-Gln-Pro-Gly-Leu-Trp-Gly). All neuropeptide copies are preceded by Xaa-Pro or Xaa-Ala sequences, suggesting a role for dipeptidyl aminopeptidase in neuropeptide precursor processing. In addition to these neuropeptide copies, there are 14 copies of another, closely related neuropeptide sequence (Gln-Asn-Pro-Gly-Leu-Trp-Gly). These copies are flanked by basic cleavage sites and, therefore, are likely to be released from the precursor protein. Furthermore, there are 13 other, related neuropeptide sequences having only small sequence variations (the most frequent sequence: Gln-Pro-Gly-Leu-Trp-Gly, eight copies). These variants are preceded by Lys-Arg, Xaa-Ala, or Xaa-Pro sequences, and are followed by basic cleavage sites, and therefore, are also likely to be produced from the precursor. Thus, there are at least 37 closely related neuropeptides localized on the precursor protein, making this precursor one of the most productive preprohormones known so far. This report also shows that unusual processing sites are common in cnidarian preprohormones.
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosage, time of treatment, and drug elimination half-life, with an in-host dynamics model of P. falciparum malaria in a malaria-naive host. The results indicate that the development of drug resistance can be categorized into three stages. The first is the selection of existing parasites with genetic mutations in the dihydrofolate reductase or dihydropteroate synthetase gene. This selection is driven by the long half-life of the sulfadoxine-pyrimethamine combination. The second stage involves the selection of parasites with allelic types of higher resistance within the host during an infection. The timing of treatment relative to initiation of a specific anti-P. falciparum EMP1 immune response is an important factor during this stage, as is the treatment dosage. During the third stage, clinical treatment failure becomes prevalent as the parasites develop sufficient resistance mutations to survive therapeutic doses of the drug combination. Therefore, the model output reaffirms the importance of correct treatment of confirmed malaria cases in slowing the development of parasite resistance to sulfadoxine-pyrimethamine.
Resumo:
Introduction: Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 ( MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1- like conditions. Results: All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. Discussion: Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. Conclusions: We therefore suggest that routine germline MEN1 mutation testing of all cases of classical'' MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 ( Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients < 30 years old with sporadic hyperparathyroidism and multigland hyperplasia
Resumo:
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp(14) was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro(13) and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.
Resumo:
Context. Abundance variations in moderately metal-rich globular clusters can give clues about the formation and chemical enrichment of globular clusters. Aims. CN, CH, Na, Mg and Al indices in spectra of 89 stars of the template metal-rich globular cluster M71 are measured and implications on internal mixing are discussed. Methods. Stars from the turn-off up to the Red Giant Branch (0.87 < log g < 4.65) observed with the GMOS multi-object spectrograph at the Gemini-North telescope are analyzed. Radial velocities, colours, effective temperatures, gravities and spectral indices are determined for the sample. Results. Previous findings related to the CN bimodality and CN-CH anticorrelation in stars of M71 are confirmed. We also find a CN-Na correlation, and Al-Na, as well as an Mg(2)-Al anticorrelation. Conclusions. A combination of convective mixing and a primordial pollution by AGB or massive stars in the early stages of globular cluster formation is required to explain the observations.
Resumo:
We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Although viperlike in appearance and habit, death adders belong to the Elapidae family of snakes. Systemic envenomation represents a serious medical problem with antivenom, which is raised against Acanthophis antarcticus venom, representing the primary treatment. This study focused on the major Acanthophis variants from Australia and islands in the Indo-Pacific region. Venoms were profiled using liquid chromatography-mass spectrometry, and analyzed for in vitro neurotoxicity (0.3-10 mug/ml), as well as the effectiveness of antivenom. (1-5 units/ml; 10 min prior to the addition of 10 mug/ml venom). The following death adder venoms were examined: A. antarcticus (from separate populations in New South Wales, Queensland, South Australia, and Western Australia), A. hawkei, A. praelongus, A. pyrrhus, A. rugosus, A. wellsi, and venom from an unnamed species from the Indonesian island of Seram. All venoms abolished indirect twitches of the chick isolated biventer cervicis nerve-muscle preparation in a dose-dependent manner. In addition, all venoms blocked responses to exogenous acetylcholine (1 m-M) and carbachol (20 muM), but not KCl (40 mM), suggesting postsynaptic neurotoxicity. Death adder antivenom (1 unit/ml) prevented the neurotoxic effects of A. pyrrhus, A. praelongus, and A. hawkei venoms, although it was markedly less effective against venoms from A. antarcticus (NSW, SA, WA), A. rugosus, A. wellsi, and A. sp. Scram. However, at 5 units/ml, antivenom was effective against all venoms tested. Death adder venoms, including those from A. antarcticus geographic variants, differed not only in their venom composition but also in their neurotoxic activity and susceptibility to antivenom. For the first time toxicological aspects of A. hawkei, A. wellsi, A. rugosus, and A. sp. Seram venoms were studied. (C) 2001 Academic Press.
Resumo:
Phonological development was assessed in six alphabetic orthographies (English, French, Greek, Icelandic, Portuguese and Spanish) at the beginning and end of the first year of reading instruction. The aim was to explore contrasting theoretical views regarding: the question of the availability of phonology at the outset of learning to read (Study 1); the influence of orthographic depth on the pace of phonological development during the transition to literacy (Study 2); and the impact of literacy instruction (Study 3). Results from 242 children did not reveal a consistent sequence of development as performance varied according to task demands and language. Phonics instruction appeared more influential than orthographic depth in the emergence of an early meta-phonological capacity to manipulate phonemes, and preliminary indications were that cross-linguistic variation was associated with speech rhythm more than factors such as syllable complexity. The implications of the outcome for current models of phonological development are discussed.
Resumo:
Context and objective:The molecular characterization of local isolates of Toxoplasma gondii is considered significant so as to assess the homologous variations between the different loci of various strains of parasites.Design and setting:The present communication deals with the molecular cloning and sequence analysis of the 1158 bp entire open reading frame (ORF) of surface antigen 3 (SAG3) of two Indian T. gondii isolates (Chennai and Izatnagar) being maintained as cryostock at the IVRI.Method:The surface antigen 3 (SAG3) of two local Indian isolates were cloned and sequenced before being compared with the available published sequences.Results:The sequence comparison analysis revealed 99.9% homology with the standard published RH strain sequence of T. gondii. The strains were also compared with other established published sequences and found to be most related to the P-Br strain and CEP strain (both 99.3%), and least with PRU strain (98.4%). However, the two Indian isolates had 100% homology between them.Conclusion:Finally, it was concluded that the Indian isolates were closer to the RH strain than to the P-Br strain (Brazilian strain), the CEP strain and the PRU strains (USA), with respect to nucleotide homology. The two Indian isolates used in the present study are known to vary between themselves, as far as homologies related to other genes are concerned, but they were found to be 100% homologous as far as SAG3 locus is concerned. This could be attributed to the fact that this SAG3 might be a conserved locus and thereby, further detailed studies are thereby warranted to exploit the use of this particular molecule in diagnostics and immunoprophylactics. The findings are important from the point of view of molecular phylogeny.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND Hirschsprung disease (HSCR) is a congenital malformation of the hindgut produced by a disruption in neural crest cell migration during embryonic development. HSCR has a complex genetic etiology and mutations in several genes, mainly the RET proto-oncogene, have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. METHODS In this study we have aimed to analyze the presence of CNVs in some HSCR genes (RET, EDN3, GDNF and ZFHX1B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. RESULTS Two alterations in the MLPA profiles of RET and EDN3 were detected, but a detailed inspection showed that the decrease in the corresponding dosages were due to point mutations affecting the hybridization probes regions. CONCLUSION Our results indicate that CNVs of the gene coding regions analyzed here are not a common molecular cause of Hirschsprung disease. However, further studies are required to determine the presence of CNVs affecting non-coding regulatory regions, as well as other candidate genes.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.