997 resultados para semiconductor materials
Resumo:
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals? difference frequency ~1 THz.(C) 2012 American Institute of Physics.
Resumo:
The optical illumination of a microstrip gap on a thick semiconductor substrate creates an inhomogeneous electron-hole plasma in the gap region. This allows the study of the propagation mechanism through the plasma region. This paper uses a multilayer plasma model to explain the origin of high losses in such structures. Measured results are shown up to 50 GHz and show good agreement with the simulated multilayer model. The model also allows the estimation of certain key parameters of the plasma, such as carrier density and diffusion length, which are difficult to measure by direct means. The detailed model validation performed here will enable the design of more complex microwave structures based on this architecture. While this paper focuses on monocrystalline silicon as the substrate, the model is easily adaptable to other semiconductor materials such as GaAs.
Resumo:
We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.
Resumo:
First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.
Resumo:
El reactor multipropósito RA-10 que se construirá en Ezeiza tiene como objetivo principal aumentar la producción de radioisótopos destinados al diagnóstico de enfermedades; adicionalmente el proyecto RA-10 permitirá ofrecer al sistema científico-tecnológico oportunidades de investigación, desarrollo y producción. Entre ellas se contará con una facilidad de dopaje de silicio a través de transmutación neutrónica para producir material semiconductor. La principal ventaja de esta técnica de fabricación es que se obtiene el semiconductor más homogéneamente dopado del mercado. Esto se logra irradiando a la pieza con un flujo neutrónico axialmente uniforme. La uniformidad axial se obtiene diseñando un aplanador de flujo que consiste en un conjunto de anillos de acero de diferentes espesores para lograr aplanar el perfil de flujo neutrónico que irradia al silicio. El objetivo de este trabajo es diseñar e implementar un algoritmo que permita calcular los espesores óptimos de acero de forma tal de modificar el perfil de flujo neutrónico que se genera en el núcleo para uniformizarlo lo más posible. Se proponen y evalúan mejoras para incrementar el valor del flujo neutrónico al cual se uniformiza. Posteriormente se evalúan los tiempos necesarios para obtener diferentes resistividades objetivo y se realizan cálculos de activación neutrónica para determinar los tiempos de decaimiento necesarios para cumplir los límites de actividad requeridos. Se realizan además cálculos de calentamiento para determinar la potencia que se debe disipar para refrigerar la facilidad.
Resumo:
El reactor multipropósito RA-10 que se construirá en Ezeiza tiene como objetivo principal aumentar la producción de radioisótopos destinados al diagnóstico de enfermedades; adicionalmente el proyecto RA-10 permitirá ofrecer al sistema científico-tecnológico oportunidades de investigación, desarrollo y producción. Entre ellas se contará con una facilidad de dopaje de silicio a través de transmutación neutrónica para producir material semiconductor. La principal ventaja de esta técnica de fabricación es que se obtiene el semiconductor más homogéneamente dopado del mercado. Esto se logra irradiando a la pieza con un flujo neutrónico axialmente uniforme. La uniformidad axial se obtiene diseñando un aplanador de flujo que consiste en un conjunto de anillos de acero de diferentes espesores para lograr aplanar el perfil de flujo neutrónico que irradia al silicio. El objetivo de este trabajo es diseñar e implementar un algoritmo que permita calcular los espesores óptimos de acero de forma tal de modificar el perfil de flujo neutrónico que se genera en el núcleo para uniformizarlo lo más posible. Se proponen y evalúan mejoras para incrementar el valor del flujo neutrónico al cual se uniformiza. Posteriormente se evalúan los tiempos necesarios para obtener diferentes resistividades objetivo y se realizan cálculos de activación neutrónica para determinar los tiempos de decaimiento necesarios para cumplir los límites de actividad requeridos. Se realizan además cálculos de calentamiento para determinar la potencia que se debe disipar para refrigerar la facilidad.
Resumo:
Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique rema1ns inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system 1s installed along with a tunable dye laser, which provides resonant excitation. Donors 1n high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions 1n a high magnetic field and at liquid helium temperature. This technique 1s successfully used to identify donors 1n n-type GaAs as well as 1n p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (3ll)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) 1s investigated using photoluminescence. Si acceptors ~n MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor ~n high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.
Resumo:
Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(lOO)-Ag interface, the CdTe(lOO)-Sb system, and the InSb(lOO)-Sn interface. High-energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2xl) structure was observed for the CdTe(lOO) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(l00)-(2xl) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(lOO)-(2xl) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(lOO) surface differed from the CdTe(lOO) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(lOO) surface, including a c(8x2), a c(4x4), an asymmetric (lx3), a symmetric (lx3), and a (lxl). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1-3/4 monolayers of Sb atoms. The c(8x2) surface is found to be terminated with 3/4 monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(lOO) structures. The room temperature growth characteristics of grey Sn on the lnSb(lOO)-c(4x4) and InSb(l00)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum for this semiconductor heterojunction system is measured to be 0.40 eV, independent of the starting surface structure and stoichiometry. This result is reconciled with theoretical predictions for heterostructure behavior.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) represent a large class of persistent organic pollutants in an environment of special concern because they have carcinogenic and mutagenic activity. In this paper, we focus on and discuss the effect of different parameters, for instance, initial concentration of Anthracene, temperature, and light intensity, on the degradation rate. These parameters were adjusted at pH 6.8 in the presence of the semiconductor materials (TiO2) as photocatalysts overUVlight. The main product of Anthracene photodegradation is 9,10-Anthraquinone which isidentified and compared with the standard compound by GC-MS. Our results indicate that the optimum conditions for the best rate of degradation are 25 ppm concentration of Anthracene, regulating the reaction vessel at 308.15 K and 2.5 mW/cm(2) of light intensity at 17 5mg/100 mL of titanium dioxide (P25).
Resumo:
We theoretically describe in this work the n-type semiconducting behavior of a set of bis(arylene-ethynylene)-s-tetrazines ((ArCC)2Tz), by comparing their electronic properties with those of their parent diaryl-s-tetrazines (Ar2Tz) after the introduction of ethynylene bridges. The significantly reduced internal reorganization energy for electron transfer is ascribed to an extended delocalization of the LUMO for (ArCC)2Tz as opposite to that for Ar2Tz, which was described mostly localized on the s-tetrazine ring. The largest electronic coupling and the corresponding electron transfer rates found for bis(phenyl-ethynylene)-s-tetrazine, as well as for some halogenated derivatives, are comparable to those reported for the best performing n-type organic semiconductor materials such as diimides and perylenes. The theoretical mobilities for the studied compounds turn out to be in the range 0.3–1.3 cm2 V–1 s–1, close to values experimentally determined for common n-type organic semiconductors used in real devices. In addition, ohmic contacts can be expected when these compounds are coupled to metallic cathodes such as Na, Ca, and Sm. For these reasons, the future application of semiconducting bis(phenyl-ethynylene)-s-tetrazine and its fluorinated and brominated derivatives in optoelectronic devices is envisioned.
Resumo:
This investigation is motivated by the need for new visible frequency direct bandgap semiconductor materials that are abundant and low-cost to meet the increasing demand for optoelectronic devices in applications such as solid state lighting and solar energy conversion. Proposed here is the utilization of zinc-IV-nitride materials, where group IV elements include silicon, germanium, and tin, as earth-abundant alternatives to the more common III-nitrides in optoelectronic devices. These compound semiconductors were synthesized under optimized conditions using reactive radio frequency magnetron sputter deposition. Single phase ZnSnN2, having limited experimental accounts in literature, is validated by identification of the wurtzite-derived crystalline structure predicted by theory through X-ray and electron diffraction studies. With the addition of germanium, bandgap tunability of ZnSnxGe1-xN2 alloys is demonstrated without observation of phase separation, giving these materials a distinct advantage over InxGa1-xN alloys. The accessible bandgaps range from 1.8 to 3.1 eV, which spans the majority of the visible spectrum. Electron densities, measured using the Hall effect, were found to be as high as 1022 cm−3 and indicate that the compounds are unintentionally degenerately doped. Given these high carrier concentrations, a Burstein-Moss shift is likely affecting the optical bandgap measurements. The discoveries made in this thesis suggest that with some improvements in material quality, zinc-IV-nitrides have the potential to enable cost-effective and scalable optoelectronic devices.
Resumo:
Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.