998 resultados para semiconducting films
Resumo:
Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The ternary Zn1-xCdxO (0less than or equal toxless than or equal to0.6) alloying films with highly c-axis orientation have been deposited on Si(111) substrates by direct current reactive magnetron sputtering method. X-ray diffraction measurement indicates that the wurtzite-type structure of ZnO can be stabilized up to nominal Cd content x similar to 0.6 without cubic CdO phase separation. The lattice parameter c of Zn1-xCdxO increases almost linearly from 5.229 Angstrom (x = 0) to 5.247 Angstrom (x = 0.6), indicating that Cd substitution takes place on the Zn lattice sites. The photoluminescence spectra of the Zn1-xCdxO thin films measured at 12 K display a substantial red shift (similar to0.3 eV) in the near-band-edges (NBEs) emission of ZnO: from 3.39 eV of ZnO to 3.00 eV of Zn0.4Cd0.6O. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in NBE emission of ZnO. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Correlations between Si nanocrystal (nc-Si) related photoluminescence (PL), Er3+ emission and nonradiative defects in the Er-doped SiO2 films containing nc-Si (SRSO) are studied. Upon 514.5 nm laser excitation the erbium-doped SRSO samples exhibit PL peaks at around 0.8 and 1.54 mum, which can be assigned to the electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively. With increasing Er3+ content in the films, Er3+ emission becomes intense while the PL at 0.8 mum decreases, suggesting a strong coupling of nc-Si and Er 31 ions. Hydrogen plasma treatment for the samples improve the PL intensities of the 0.8 and 1.54 mum bands, indicating H passivation for the nonradiative defects existing in the samples. Further-more, from the effect of hydrogen treatment for the samples, we observe variation of the number of nonradiative defects with annealing temperatures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Based on experimental results and theoretical analysis effects of the crystal structure on the optical and electrical properties of pyrite FeS2 films produced by thermally sulfurizing iron films at various temperatures have been systematically studied. The results indicate that the crystal structure and some related factors, such as the crystallization and the stoichiometry, remarkably influence the optical and electrical performances of the pyrite films. It is also shown that the preferred orientation of the crystal grain plays a major role in determining the crystal structure and the optical and electrical properties of the pyrite FeS2 films. Also we find that it is the crystal grains, rather than the particles that exercise a decisive influence on the electrical performance of pyrite films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A detailed characterisation study of GaN thin films grown by rf-plasma molecular beam epitaxy on intermediate-temperature buffer layers (ITBL) was carried out with Hall, photoluminescence (PL) and deep-level transient Fourier spectroscopy (DLTFS) techniques. The unique feature of our GaN thin films is that the GaN epitaxial layers are grown on top of a double layer that consists of an ITBL, which is grown at 690 degreesC, and a conventional low-temperature buffer layer deposited at 500 degreesC. It is observed that the electron mobility increases steadily with the thickness of the ITBL, which peaks at 377 cm(2)V(-1)S(-1) for an ITBL thickness of 800 nm. The PL also demonstrated systematic improvements with the thickness of the ITBL. The DLTFS results suggest a three-order-of-magnitude reduction in the deep level at E-c-0.40 eV in the device fabricated with the GaN films grown on an ITBL thickness of 1.25 mum in comparison with the control device without an ITBL. Our analyses indicate that the utilization of an ITBL in addition to the conventional low-temperature buffer layer leads to the relaxation of residual strain within the material, resulting in an improvement in the optoelectronic properties of the films. (C) 2002 Elsevier Science BN. All rights reserved.
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
A series of Eu3+-doped ZnO films have been prepared by a sol-gel method. These films were characterized by X-ray diffraction (XRD) and photoluminecent spectra (PL). Effects of synthetic parameters, such as annealing atmosphere, temperature and concentration of doped ions, on the highly oriented crystal growth were studied in detail. The crystalline structures of films annealed in vacuum have a wurtzite symmetry with highly c-axis orientation. A characteristic D-5(0) -> F-7(J)(J = 1, 2, 3 and 4) red emission is observed due to energy transfer from the ZnO host to the doped Eu3+ in the c-oriented ZnO films.
Resumo:
The amplified spontaneous emission and gain characteristics of various fluorescent dyes, 2-(1,1-dimethylethyl)-6(2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo[ij] quinolizin-9-1)ethenyl)-4H-pyran-4-ylidene) propanedinitrile (DCJTB) and 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), doped in polystyrene (PS) matrices were studied and compared. It was found that DCJTB has a larger net gain, 40.72 cm(-1), a lower loss, 2.49 cm(-1), and a lower threshold, 0.16 (mJ/pulse)/cm(2), than DCM, which has a net gain of 11.95 cm(-1), a loss of 9.25 cm(-1), and a threshold of 4(mJ/pulse)/cm(2). The improvement of performance in DCJTB PS films is attributed to the larger free volume of DCJTB caused by the introduction of steric spacer groups into the DCJTB molecule.
Resumo:
The temperature dependence of the resistivity of KrF laser irradiated polyimide films was studied. In all cases, the resistivity decreased with increasing temperature. The irradiated polyimide film exhibited a typical semiconducting property. This result indicated that the irradiated polyimide films can be used as temperature-sensitive materials. We demonstrated that both the sensitivity and the sensitive temperature range of the irradiated polyimide films can be altered by adjusting laser irradiation parameters. The intrinsic relationship between the temperature coefficient of the resistivity and irradiation condition was interpreted in terms of the microstructural change. The result provided a new insight into the fundamental aspects of laser irradiated polyimide film structure and a method of preparing temperature-sensitive materials. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The optical, electrical and photoelectric properties of rare earth monophosphides (LnP, Ln = La, Nd, Sm, Y, Dy and Yb) have been studied in thin films. The films exhibit semiconducting behaviour with energy gaps of 1.0-1.46 eV and n-type electrical conduction. Their resistivities are 10(-2) OMEGA-cm with corresponding Hall mobilities of 8.5-400 cm2 V-1 s-1. The films are deposited on a p-type silicon substrate in vacuum. Voltage-current characteristic measurements show that a p-n junction has been formed between LnP and silicon. Spectral sensitivity and a photovoltaic effect have been observed in LnP-Si junctions. They may be useful photoelectric materials.
Resumo:
The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.
Resumo:
ZnGa2O4 spinel is a promising new UV transparent electronic conductor. Enhancing the electrical conductivity of this potential oxide phosphor can make it a promising transparent conducting oxide. In this paper, we have investigated the effects of processing and doping on the conductivity of semiconducting ZnGa2O4, particularly thin films. Crystalline zinc gallate thin films have been deposited on fused quartz substrates employing the pulsed laser deposition (PLD) technique at room temperature for an oxygen partial pressure of 0.1 Pa (0.001mbar). The films were found to be UV transparent, the band gap of which shifted to 4.75eV on hydrogen annealing. The band gap of the oxygen stoichiometric bulk powder samples (4.55eV) determined from diffuse reflection spectrum (DRS) shifted to 4.81eV on reduction in a hydrogen atmosphere. The electrical conductivity improved when Sn was incorporated into the ZnGa2O4 spinel. The conductivity of ZnGa2O4:Sn thin films was further improved on reduction.
Resumo:
In this work we present the results of our attempt to build a compact photothermal spectrometer capable of both manual and automated mode of operation.The salient features of the system include the ability to analyse thin film, powder and polymer samples. The tool has been in use to investigate thermal, optical and transport properties. Binary and ternary semiconducting thin films were analysed for their thermal diffusivities. The system could perform thickness measurements nondestructively. Ion implanted semiconductors are widely studied for the effect of radiation induced defects. We could perform nondestructive imaging of defects using our spectrometer.The results reported in his thesis on the above in addition to studies on In2S3 and transparent conducting oxide ZnO have been achieved with this spectrometer. Various polymer samples have been easily analysed for their thermal diffusivities. The technique provided ease of analysis not achieved with conventional techniques like TGA and DSC. Industrial application of the tool has also been proved by analyzing defects of welded joints and adhesion of paints. Indigenization of the expensive lock-in-amplifier and automation has been the significant achievement in the course of this dissertation. We are on our way to prove the noise rejection capabilities of our PC LIA.
Resumo:
The thesis is a report of the attempts made to prepare semiconducting and dielectric thin films and to study their electrical properties. It consists of (i) studies on the preparation and electrical characteristics of compound semiconductor thin films of silver sulphide and ferric hydroxide, and (ii) investigations on the electrical and dielectric properties of plasma polymerized thin films of para-toluidine element