827 resultados para semantic frames
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
With the rising popularity of anime amongst animation students, audiences and scholars around the world, it has become increasingly important to critically analyse anime as being more than a ‘limited’ form of animation, and thematically as encompassing more than super robots and pocket monsters. Frames of Anime: Culture and Image-Building charts the development of Japanese animation from its indigenous roots within a native culture, through Japan’s experience of modernity and the impact of the Second World War. This text is the result of a rigorous study that recognises the heterogeneous and polymorphous background of anime. As such, Tze-Yue has adopted an ‘interdisciplinary and transnational’ (p. 7) approach to her enquiry, drawing upon face-to-face interviews, on-site visits and biographical writings of animators. Tze-Yue delineates anime from other forms of animation by linking its visual style to pre-modern Japanese art forms and demonstrating the connection it shares with an indigenous folk system of beliefs. Via the identification of traditional Japanese art forms and their visual connectedness to Japanese animation, Tze-Yue shows that the Japanese were already heavily engaged in what was destined to become anime once technology had enabled its production. Tze-Yue’s efforts to connect traditional Japanese art forms, and their artistic elements, to contemporary anime reveals that the Japanese already had a rich culture of visual storytelling that pre-dates modern animation. She identifies the Japanese form of the magic lantern at the turn of the 19th century, utsushi-e, as the pre-modern ancestor of Japanese animation, describing it as ‘Edo anime’ (p. 43). Along with utsushi-e, the Edo period also saw the woodblock print, ukiyo-e, being produced for the rising middle class (p. 32). Highlighting the ‘resurfacing’ of ‘realist’ approaches to Japanese art in ukiyo-e, Tze-Yue demonstrates the visual connection of ukiyo-e and anime in the …
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepeneurship researchers. In this vignette, Dr Rene Bakker considers project team dynamics and how executive education can be enriched by studying them in the classroom.
Resumo:
This paper develops and evaluates an enhanced corpus based approach for semantic processing. Corpus based models that build representations of words directly from text do not require pre-existing linguistic knowledge, and have demonstrated psychologically relevant performance on a number of cognitive tasks. However, they have been criticised in the past for not incorporating sufficient structural information. Using ideas underpinning recent attempts to overcome this weakness, we develop an enhanced tensor encoding model to build representations of word meaning for semantic processing. Our enhanced model demonstrates superior performance when compared to a robust baseline model on a number of semantic processing tasks.
Resumo:
From a law enforcement standpoint, the ability to search for a person matching a semantic description (i.e. 1.8m tall, red shirt, jeans) is highly desirable. While a significant research effort has focused on person re-detection (the task of identifying a previously observed individual in surveillance video), these techniques require descriptors to be built from existing image or video observations. As such, person re-detection techniques are not suited to situations where footage of the person of interest is not readily available, such as a witness reporting a recent crime. In this paper, we present a novel framework that is able to search for a person based on a semantic description. The proposed approach uses size and colour cues, and does not require a person detection routine to locate people in the scene, improving utility in crowded conditions. The proposed approach is demonstrated with a new database that will be made available to the research community, and we show that the proposed technique is able to correctly localise a person in a video based on a simple semantic description.
Resumo:
Our aim is to develop a set of leading performance indicators to enable managers of large projects to forecast during project execution how various stakeholders will perceive success months or even years into the operation of the output. Large projects have many stakeholders who have different objectives for the project, its output, and the business objectives they will deliver. The output of a large project may have a lifetime that lasts for years, or even decades, and ultimate impacts that go beyond its immediate operation. How different stakeholders perceive success can change with time, and so the project manager needs leading performance indicators that go beyond the traditional triple constraint to forecast how key stakeholders will perceive success months or even years later. In this article, we develop a model for project success that identifies how project stakeholders might perceive success in the months and years following a project. We identify success or failure factors that will facilitate or mitigate against achievement of those success criteria, and a set of potential leading performance indicators that forecast how stakeholders will perceive success during the life of the project's output. We conducted a scale development study with 152 managers of large projects and identified two project success factor scales and seven stakeholder satisfaction scales that can be used by project managers to predict stakeholder satisfaction on projects and so may be used by the managers of large projects for the basis of project control.
Resumo:
This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.
Resumo:
Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. Previous research assumed a quantum-like model in which the semantic network was modelled as entangled qubits, however the level of activation was clearly being over-estimated. This paper explores three variations of this model, each of which are distinguished by a scaling factor designed to compensate the overestimation.