987 resultados para scattering surface


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a surface-enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogenchalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbonchalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The integration of block-copolymers and nanoimprint lithography presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the block-copolymers nanoimprint lithography integrated method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Issued : June 1972"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new surface analysis technique has been developed which has a number of benefits compared to conventional Low Energy Ion Scattering Spectrometry (LEISS). A major potential advantage arising from the absence of charge exchange complications is the possibility of quantification. The instrumentation that has been developed also offers the possibility of unique studies concerning the interaction between low energy ions and atoms and solid surfaces. From these studies it may also be possible, in principle, to generate sensitivity factors to quantify LEISS data. The instrumentation, which is referred to as a Time-of-Flight Fast Atom Scattering Spectrometer has been developed to investigate these conjecture in practice. The development, involved a number of modifications to an existing instrument, and allowed samples to be bombarded with a monoenergetic pulsed beam of either atoms or ions, and provided the capability to analyse the spectra of scattered atoms and ions separately. Further to this a system was designed and constructed to allow incident, exit and azimuthal angles of the particle beam to be varied independently. The key development was that of a pulsed, and mass filtered atom source; which was developed by a cyclic process of design, modelling and experimentation. Although it was possible to demonstrate the unique capabilities of the instrument, problems relating to surface contamination prevented the measurement of the neutralisation probabilities. However, these problems appear to be technical rather than scientific in nature, and could be readily resolved given the appropriate resources. Experimental spectra obtained from a number of samples demonstrate some fundamental differences between the scattered ion and neutral spectra. For practical non-ordered surfaces the ToF spectra are more complex than their LEISS counterparts. This is particularly true for helium scattering where it appears, in the absence of detailed computer simulation, that quantitative analysis is limited to ordered surfaces. Despite this limitation the ToFFASS instrument opens the way for quantitative analysis of the 'true' surface region to a wider range of surface materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetization and Mossbauer spectroscopy measurements are performed at low temperature under high field, on nanoparticles with a nickel ferrite core and a maghemite shell. These nanoparticles present finite size and surface effects, together with exchange anisotropy. High field magnetization brings the evidences of a monodomain ordered core and surface spins freezing in disorder at low temperature. Mossbauer spectra at 4.2 K present an extra contribution from the disordered surface which is field dependent. Field and size dependences of this latter show a progressive spin alignment along the ferrite core which is size dependent. The weak surface pinning condition of the nanoparticles confirms that the spin disorder is localized in the external shell. The underfield decrease in the mean canting angle in the superficial shell is then directly related to the unidirectional exchange anisotropy through the interface between the ordered core and the disordered shell. The obtained anisotropy field H(Ea) scales as the inverse of the nanoparticle diameter, validating its interfacial origin. The associated anisotropy constant K(Ea) equals 2.5 x 10(-4) J/m(2). (C) 2009 American Institute qf Physics. [doi: 10.1063/1.3245326]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-precision data of backward-angle elastic and quasielastic scattering for the weakly bound (6)Li projectile on (144)Sm target at deep-sub-barrier, near-, and above-barrier energies were measured. From the deep-sub-barrier data, the surface diffuseness of the nuclear interacting potential was studied. Barrier distributions were extracted from the first derivatives of the elastic and quasielastic excitation functions. It is shown that sequential breakup through the first resonant state of the (6)Li is an important channel to be included in coupled-channels calculations, even at deep-sub-barrier energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior of Au nanorods and Ag nanocubes as analytical sensors was evaluated for three different classes of herbicides. The use of such anisotropic nanoparticles in surface-enhanced Raman scattering (SERS) experiments allows the one to obtain the spectrum of crystal violet dye in the single molecule regime, as well as the pesticides dichlorophenoxyacetic acid (2,4-D), trichlorfon and ametryn. Such metallic substrates show high SERS performance at low analyte concentrations making them adequate for use as analytical sensors. Density functional theory (DFT) calculations of the geometries and vibrational wavenumbers of the adsorbates in the presence of silver or gold atoms were used to elucidate the nature of adsorbate-nanostructure bonding in each case and support the enhancement patterns observed in each SERS spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic foam films have been investigated using an improved experimental set-up with a CCD high-speed linescan camera in conjunction with the Scheludko micro-interferometric cell for studying the drainage and rupture of liquid foam films. The improved experimental set-up increased the sensibility of detection of the local thickness heterogeneities and domains during the film evolution. The evolution of the foam films up to the formation of black spots was recorded in the time intervals of 50ms. The wavelengths of the propagating surface waves and their frequencies were determined experimentally. The experimental results show that the current quasi-static hydrodynamic theory does not properly describe the wave dynamics with inter-domain channels. However, the thermodynamic condition for formation of black spots in the foam films was met by the experimental results. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.