808 resultados para scalable parallel programming
Resumo:
Software Defined Radio (SDR) hardware platforms use parallel architectures. Current concepts of developing applications (such as WLAN) for these platforms are complex, because developers describe an application with hardware-specifics that are relevant to parallelism such as mapping and scheduling. To reduce this complexity, we have developed a new programming approach for SDR applications, called Virtual Radio Engine (VRE). VRE defines a language for describing applications, and a tool chain that consists of a compiler kernel and other tools (such as a code generator) to generate executables. The thesis presents this concept, as well as describes the language and the compiler kernel that have been developed by the author. The language is hardware-independent, i.e., developers describe tasks and dependencies between them. The compiler kernel performs automatic parallelization, i.e., it is capable of transforming a hardware-independent program into a hardware-specific program by solving hardware-specifics, in particular mapping, scheduling and synchronizations. Thus, VRE simplifies programming tasks as developers do not solve hardware-specifics manually.
Resumo:
Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor systems presents a new challenge for established parallel programming paradigms, including those based on MPI. This paper presents a new Java messaging system called MPJ Express. Using this system, we exploit multiple levels of parallelism - messaging and threading - to improve application performance on multi-core processors. We refer to our approach as nested parallelism. This MPI-like Java library can support nested parallelism by using Java or Java OpenMP (JOMP) threads within an MPJ Express process. Practicality of this approach is assessed by porting to Java a massively parallel structure formation code from Cosmology called Gadget-2. We introduce nested parallelism in the Java version of the simulation code and report good speed-ups. To the best of our knowledge it is the first time this kind of hybrid parallelism is demonstrated in a high performance Java application. (C) 2009 Elsevier Inc. All rights reserved.
Algoritmo evolutivo paralelo para o problema de atribuição de localidades a anéis em redes sonet/sdh
Resumo:
The telecommunications play a fundamental role in the contemporary society, having as one of its main roles to give people the possibility to connect them and integrate them into society in which they operate and, therewith, accelerate development through knowledge. But as new technologies are introduced on the market, increases the demand for new products and services that depend on the infrastructure offered, making the problems of planning of telecommunication networks become increasingly large and complex. Many of these problems, however, can be formulated as combinatorial optimization models, and the use of heuristic algorithms can help solve these issues in the planning phase. This paper proposes the development of a Parallel Evolutionary Algorithm to be applied to telecommunications problem known in the literature as SONET Ring Assignment Problem SRAP. This problem is the class NP-hard and arises during the physical planning of a telecommunication network and consists of determining the connections between locations (customers), satisfying a series of constrains of the lowest possible cost. Experimental results illustrate the effectiveness of the Evolutionary Algorithm parallel, over other methods, to obtain solutions that are either optimal or very close to it
Resumo:
The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors
Resumo:
This work presents the concept, design and implementation of a MP-SoC platform, named STORM (MP-SoC DirecTory-Based PlatfORM). Currently the platform is composed of the following modules: SPARC V8 processor, GPOP processor, Cache module, Memory module, Directory module and two different modles of Network-on-Chip, NoCX4 and Obese Tree. All modules were implemented using SystemC, simulated and validated, individually or in group. The modules description is presented in details. For programming the platform in C it was implemented a SPARC assembler, fully compatible with gcc s generated assembly code. For the parallel programming it was implemented a library for mutex managing, using the due assembler s support. A total of 10 simulations of increasing complexity are presented for the validation of the presented concepts. The simulations include real parallel applications, such as matrix multiplication, Mergesort, KMP, Motion Estimation and DCT 2D
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Transactional memory (TM) is a new synchronization mechanism devised to simplify parallel programming, thereby helping programmers to unleash the power of current multicore processors. Although software implementations of TM (STM) have been extensively analyzed in terms of runtime performance, little attention has been paid to an equally important constraint faced by nearly all computer systems: energy consumption. In this work we conduct a comprehensive study of energy and runtime tradeoff sin software transactional memory systems. We characterize the behavior of three state-of-the-art lock-based STM algorithms, along with three different conflict resolution schemes. As a result of this characterization, we propose a DVFS-based technique that can be integrated into the resolution policies so as to improve the energy-delay product (EDP). Experimental results show that our DVFS-enhanced policies are indeed beneficial for applications with high contention levels. Improvements of up to 59% in EDP can be observed in this scenario, with an average EDP reduction of 16% across the STAMP workloads. © 2012 IEEE.
Resumo:
Software transaction memory (STM) systems have been used as an approach to improve performance, by allowing the concurrent execution of atomic blocks. However, under high-contention workloads, STM-based systems can considerably degrade performance, as transaction conflict rate increases. Contention management policies have been used as a way to select which transaction to abort when a conflict occurs. In general, contention managers are not capable of avoiding conflicts, as they can only select which transaction to abort and the moment it should restart. Since contention managers act only after a conflict is detected, it becomes harder to effectively increase transaction throughput. More proactive approaches have emerged, aiming at predicting when a transaction is likely to abort, postponing its execution. Nevertheless, most of the proposed proactive techniques are limited, as they do not replace the doomed transaction by another or, when they do, they rely on the operating system for that, having little or no control on which transaction to run. This article proposes LUTS, a lightweight user-level transaction scheduler. Unlike other techniques, LUTS provides the means for selecting another transaction to run in parallel, thus improving system throughput. We discuss LUTS design and propose a dynamic conflict-avoidance heuristic built around its scheduling capabilities. Experimental results, conducted with the STAMP and STMBench7 benchmark suites, running on TinySTM and SwissTM, show how our conflict-avoidance heuristic can effectively improve STM performance on high contention applications. © 2012 Springer Science+Business Media, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho apresentamos a solução do campo eletromagnético gerado por um dipolo elétrico horizontal em meios transversalmente isotrópicos com eixo de simetria vertical (TIV) e com eixo de simetria inclinado (TII). Para modelos unidimensionais, o campo eletromagnético foi obtido por duas metodologias distintas: (1) solução semi-analítica das equações de Maxwell com auxílio de potenciais vetores no caso TIV e (2) em modelos com anisotropia transversal inclinada o campo eletromagnético foi separado em primário e secundário, e então, o campo secundário foi calculado pelo método de elementos finitos no domínio (kx, ky, z) da transformada de Fourier. Para estruturas bidimensionais, foi aplicada a mesma metodologia usado nos modelos TII unidimensionais, onde o campo secundário foi calculado pelo método de elementos finitos no domínio (x, ky, z), da transformada de Fourier, com a utilização de malhas não estruturadas para discretização dos modelos. Estas respostas foram usados para avaliar os efeitos da anisotropia elétrica nos dados CSEM marinho 1D e 2,5D.
Resumo:
This work presents a study about the use of standards and directions on parallel programming in distributed systems, using the MPI standard and PETSc toolkit, performing an analysis of their performances over certain mathematic operations involving matrices. The concepts are used to develop applications to solve problems involving Principal Components Analysis (PCA), which are executed in a Beowulf cluster. The results are compared to the ones of an analogous application with sequencial execution, and then it is analized if there was any performance boost on the parallel application
Resumo:
Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.
Resumo:
I moderni sistemi embedded sono equipaggiati con risorse hardware che consentono l’esecuzione di applicazioni molto complesse come il decoding audio e video. La progettazione di simili sistemi deve soddisfare due esigenze opposte. Da un lato è necessario fornire un elevato potenziale computazionale, dall’altro bisogna rispettare dei vincoli stringenti riguardo il consumo di energia. Uno dei trend più diffusi per rispondere a queste esigenze opposte è quello di integrare su uno stesso chip un numero elevato di processori caratterizzati da un design semplificato e da bassi consumi. Tuttavia, per sfruttare effettivamente il potenziale computazionale offerto da una batteria di processoriè necessario rivisitare pesantemente le metodologie di sviluppo delle applicazioni. Con l’avvento dei sistemi multi-processore su singolo chip (MPSoC) il parallel programming si è diffuso largamente anche in ambito embedded. Tuttavia, i progressi nel campo della programmazione parallela non hanno mantenuto il passo con la capacità di integrare hardware parallelo su un singolo chip. Oltre all’introduzione di multipli processori, la necessità di ridurre i consumi degli MPSoC comporta altre soluzioni architetturali che hanno l’effetto diretto di complicare lo sviluppo delle applicazioni. Il design del sottosistema di memoria, in particolare, è un problema critico. Integrare sul chip dei banchi di memoria consente dei tempi d’accesso molto brevi e dei consumi molto contenuti. Sfortunatamente, la quantità di memoria on-chip che può essere integrata in un MPSoC è molto limitata. Per questo motivo è necessario aggiungere dei banchi di memoria off-chip, che hanno una capacità molto maggiore, come maggiori sono i consumi e i tempi d’accesso. La maggior parte degli MPSoC attualmente in commercio destina una parte del budget di area all’implementazione di memorie cache e/o scratchpad. Le scratchpad (SPM) sono spesso preferite alle cache nei sistemi MPSoC embedded, per motivi di maggiore predicibilità, minore occupazione d’area e – soprattutto – minori consumi. Per contro, mentre l’uso delle cache è completamente trasparente al programmatore, le SPM devono essere esplicitamente gestite dall’applicazione. Esporre l’organizzazione della gerarchia di memoria ll’applicazione consente di sfruttarne in maniera efficiente i vantaggi (ridotti tempi d’accesso e consumi). Per contro, per ottenere questi benefici è necessario scrivere le applicazioni in maniera tale che i dati vengano partizionati e allocati sulle varie memorie in maniera opportuna. L’onere di questo compito complesso ricade ovviamente sul programmatore. Questo scenario descrive bene l’esigenza di modelli di programmazione e strumenti di supporto che semplifichino lo sviluppo di applicazioni parallele. In questa tesi viene presentato un framework per lo sviluppo di software per MPSoC embedded basato su OpenMP. OpenMP è uno standard di fatto per la programmazione di multiprocessori con memoria shared, caratterizzato da un semplice approccio alla parallelizzazione tramite annotazioni (direttive per il compilatore). La sua interfaccia di programmazione consente di esprimere in maniera naturale e molto efficiente il parallelismo a livello di loop, molto diffuso tra le applicazioni embedded di tipo signal processing e multimedia. OpenMP costituisce un ottimo punto di partenza per la definizione di un modello di programmazione per MPSoC, soprattutto per la sua semplicità d’uso. D’altra parte, per sfruttare in maniera efficiente il potenziale computazionale di un MPSoC è necessario rivisitare profondamente l’implementazione del supporto OpenMP sia nel compilatore che nell’ambiente di supporto a runtime. Tutti i costrutti per gestire il parallelismo, la suddivisione del lavoro e la sincronizzazione inter-processore comportano un costo in termini di overhead che deve essere minimizzato per non comprometterre i vantaggi della parallelizzazione. Questo può essere ottenuto soltanto tramite una accurata analisi delle caratteristiche hardware e l’individuazione dei potenziali colli di bottiglia nell’architettura. Una implementazione del task management, della sincronizzazione a barriera e della condivisione dei dati che sfrutti efficientemente le risorse hardware consente di ottenere elevate performance e scalabilità. La condivisione dei dati, nel modello OpenMP, merita particolare attenzione. In un modello a memoria condivisa le strutture dati (array, matrici) accedute dal programma sono fisicamente allocate su una unica risorsa di memoria raggiungibile da tutti i processori. Al crescere del numero di processori in un sistema, l’accesso concorrente ad una singola risorsa di memoria costituisce un evidente collo di bottiglia. Per alleviare la pressione sulle memorie e sul sistema di connessione vengono da noi studiate e proposte delle tecniche di partizionamento delle strutture dati. Queste tecniche richiedono che una singola entità di tipo array venga trattata nel programma come l’insieme di tanti sotto-array, ciascuno dei quali può essere fisicamente allocato su una risorsa di memoria differente. Dal punto di vista del programma, indirizzare un array partizionato richiede che ad ogni accesso vengano eseguite delle istruzioni per ri-calcolare l’indirizzo fisico di destinazione. Questo è chiaramente un compito lungo, complesso e soggetto ad errori. Per questo motivo, le nostre tecniche di partizionamento sono state integrate nella l’interfaccia di programmazione di OpenMP, che è stata significativamente estesa. Specificamente, delle nuove direttive e clausole consentono al programmatore di annotare i dati di tipo array che si vuole partizionare e allocare in maniera distribuita sulla gerarchia di memoria. Sono stati inoltre sviluppati degli strumenti di supporto che consentono di raccogliere informazioni di profiling sul pattern di accesso agli array. Queste informazioni vengono sfruttate dal nostro compilatore per allocare le partizioni sulle varie risorse di memoria rispettando una relazione di affinità tra il task e i dati. Più precisamente, i passi di allocazione nel nostro compilatore assegnano una determinata partizione alla memoria scratchpad locale al processore che ospita il task che effettua il numero maggiore di accessi alla stessa.