975 resultados para repeat synchronization
Resumo:
Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study.
Resumo:
Dissertation presented to obtain the Ph.D degree in Computational Biology
Resumo:
When interacting with each other, people often synchronize spontaneously their movements, e.g. during pendulum swinging, chair rocking[5], walking [4][7], and when executing periodic forearm movements[3].Although the spatiotemporal information that establishes the coupling, leading to synchronization, might be provided by several perceptual systems, the systematic study of different sensory modalities contribution is widely neglected. Considering a) differences in the sensory dominance on the spatial and temporal dimension[5] , b) different cue combination and integration strategies [1][2], and c) that sensory information might provide different aspects of the same event, synchronization should be moderated by the type of sensory modality. Here, 9 naïve participants placed a bottle periodically between two target zones, 40 times, in 12 conditions while sitting in front of a confederate executing the same task. The participant could a) see and hear, b) see , c) hear the confederate, d) or audiovisual information about the movements of the confederate was absent. The couple started in 3 different relative positions (i.e., in-phase, anti-phase, out of phase). A retro-reflective marker was attached to the top of the bottles. Bottle displacement was captured by a motion capture system. We analyzed the variability of the continuous relative phase reflecting the degree of synchronization. Results indicate the emergence of spontaneous synchronization, an increase with bimodal information, and an influence of the initial phase relation on the particular synchronization pattern. Results have theoretical implication for studying cue combination in interpersonal coordination and are consistent with coupled oscillator models.
Resumo:
[Excerpt] Synchronization of periodic movements like side-by-side walking [7] is frequently modeled by coupled oscillators [5] and the coupling strength is defined quantitatively [3]. In contrast, in most studies on sensorimotor synchronization (SMS), simple movements like finger taps are synchronized with simple stimuli like metronomes [4]. While the latter paradigm simplifies matters and allows for the assessment of the relative weights of sensory modalities through systematic variation of the stimuli [1], it might lack ecological validity. Conversely, using more complex movements and stimuli might complicate the specification of mechanisms underlying coupling. We merged the positive aspects of both approaches to study the contribution of auditory and visual information on synchronization during side-by-side walking. As stimuli, we used Point Light Walkers (PLWs) and auralized steps sound; both were constructed from previously captured walking individuals [2][6]. PLWs were retro-projected on a screen and matched according to gender, hip height, and velocity. The participant walked for 7.20m side by side with 1) a PLW, 2) steps sound, or 3) both displayed in temporal congruence. Instruction to participants was to synchronize with the available stimuli. [...]
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Synchronization of data coming from different sources is of high importance in biomechanics to ensure reliable analyses. This synchronization can either be performed through hardware to obtain perfect matching of data, or post-processed digitally. Hardware synchronization can be achieved using trigger cables connecting different devices in many situations; however, this is often impractical, and sometimes impossible in outdoors situations. The aim of this paper is to describe a wireless system for outdoor use, allowing synchronization of different types of - potentially embedded and moving - devices. In this system, each synchronization device is composed of: (i) a GPS receiver (used as time reference), (ii) a radio transmitter, and (iii) a microcontroller. These components are used to provide synchronized trigger signals at the desired frequency to the measurement device connected. The synchronization devices communicate wirelessly, are very lightweight, battery-operated and thus very easy to set up. They are adaptable to every measurement device equipped with either trigger input or recording channel. The accuracy of the system was validated using an oscilloscope. The mean synchronization error was found to be 0.39 μs and pulses are generated with an accuracy of <2 μs. The system provides synchronization accuracy about two orders of magnitude better than commonly used post-processing methods, and does not suffer from any drift in trigger generation.
Resumo:
Intracardiac organization indices such as atrial fibril- lation (AF) cycle length (AFCL) have been used to track the efficiency of stepwise catheter ablation (step-CA) of long-standing persistent AF (pers-AF), however, with lim- ited success. The timing between nearby bipolar intracar- diac electrograms (EGMs) reflects the spatial dynamics of wavelets during AF. The extent of synchronization between EGMs is an indirect measure of AF spatial organization. The synchronization between nearby EGMs during step- CA of pers-AF was evaluated using new indices based on the cross-correlation. The first one (spar(W)) quantifies the sparseness of the cross-correlation of local activation times. The second one (OI(W)) reflects the local concen- tration around the largest peak of the cross-correlation. By computing their relative evolution during step-CA until AF termination (AF-term), we found that OI(W) appeared su- perior to AFCL and spar(W) to track the effect of step-CA "en route" to AF-term.
Resumo:
Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.
Resumo:
The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.
Resumo:
The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.
Resumo:
Recently we cloned and sequenced the first eight Trypanosoma cruzi polymorphic microsatellite loci and studied 31 clones and strains to obtain valuable information about the population structure of the parasite. We have now studied 23 further strains, increasing from 11 to 31 the number of strains obtained from patients with chronic Chagas disease. This expanded set of 54 strains and clones analyzed with the eight microsatellites markers confirmed the previously observed diploidy, clonal population organization and very high polymorphism of T. cruzi. Moreover, this new study disclosed two new features of the population genetic structure of T. cruzi. The first was the discovery that, similarly to what we had previously shown for strains isolated from insect vectors, mammals and humans with acute disease, isolates from patients in the chronic phase of Chagas disease could also be multiclonal, albeit at a reduced proportion. Second, when we used parsimony to display the genetic relationship among the clonal lineages in an unrooted Wagner network we observed, like before, a good correlation of the tree topography with the classification in three clusters on the basis of single locus analysis of the ribosomal RNA genes. However, a significant new finding was that now the strains belonging to cluster 2 split in two distant sub-clusters. This observation suggests that the evolutionary history of T. cruzi may be more complex than we previously thought.
Resumo:
Object The purpose of this study was to establish the safety and efficacy of repeat Gamma Knife surgery (GKS) for recurrent trigeminal neuralgia (TN). Methods Using the prospective database of TN patients treated with GKS in Timone University Hospital (Marseille, France), data were analyzed for 737 patients undergoing GKS for TN Type 1 from July 1992 to November 2010. Among the 497 patients with initial pain cessation, 34.4% (157/456 with ≥ 1-year follow-up) experienced at least 1 recurrence. Thirteen patients (1.8%) were considered for a second GKS, proposed only if the patients had good and prolonged initial pain cessation after the first GKS, with no other treatment alternative at the moment of recurrence. As for the first GKS, a single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.6 mm (range 4-14 mm) anterior to the emergence of the nerve (retrogasserian target). A median maximum dose of 90 Gy (range 70-90 Gy) was delivered. Data for 9 patients with at least 1-year followup were analyzed. A systematic review of literature was also performed, and results are compared with those of the Marseille study. Results The median time to retreatment in the Marseille study was 72 months (range 12-125 months) and in the literature it was 17 months (range 3-146 months). In the Marseille study, the median follow-up period was 33.9 months (range 12-96 months), and 8 of 9 patients (88.9%) had initial pain cessation with a median of 6.5 days (range 1-180 days). The actuarial rate for new hypesthesia was 33.3% at 6 months and 50% at 1 year, which remained stable for 7 years. The actuarial probabilities of maintaining pain relief without medication at 6 months and 1 year were 100% and 75%, respectively, and remained stable for 7 years. The systematic review analyzed 20 peer-reviewed studies reporting outcomes for repeat GKS for recurrent TN, with a total of 626 patients. Both the selection of the cases for retreatment and the way of reporting outcomes vary widely among studies, with a median rate for initial pain cessation of 88% (range 60%-100%) and for new hypesthesia of 33% (range 11%-80%). Conclusions Results from the Marseille study raise the question of surgical alternatives after failed GKS for TN. The rates of initial pain cessation and recurrence seem comparable to, or even better than, those of the first GKS, according to different studies, but toxicity is much higher, both in the Marseille study and in the published data. Neither the Marseille study data nor literature data answer the 3 cardinal questions regarding repeat radiosurgery in recurrent TN: which patients to retreat, which target is optimal, and which dose to use.