933 resultados para real-time quantitative PCR
Resumo:
Equine Influenza ist eine durch Influenza A-Viren verursachte, kontagiöse Respirationserkrankung beim Pferd. In dieser Arbeit wurde eine real-time RT-PCR in einem konservierten Abschnitt des Matrix-Segments des viralen Genoms für die schnelle und sensitive Diagnose von equinen Influenzaviren (EIV) und je eine RT-PCR Methode im Matrix- und im HA-Segment für die molekular-epidemiologische Charakterisierung der Viren entwickelt. Die Primer der real-time RT-PCR sind zu 99.4% der bekannten EIV-Sequenzen und zu 97.7% aller Influenza A-Sequenzen homolog. Die Homologie der Minor Groove Binder (MGB)-Sonde lag bei 99.3% und 99.6%. Diese hohen Werte ermöglichen die Anwendung des Assays für Influenzaviren bei anderen Spezies. Die diagnostische Eignung der Methode wurde mit Hilfe von 20 equinen, 11 porcinen sowie 2 aviären Proben verifiziert. Eine hohe Spezifität für Influenzaviren wurde experimentell und mittels Software-Simulation gezeigt. Die analytische Sensitivität des Tests lag bei 102–103 RNA-Kopien und 100–101 DNA-Kopien, was den Virusnachweis auch bei geringer Virusausscheidung ermöglicht. Alle amplifizierten EIV-Sequenzen konnten phylogenetisch den bekannten Linien zugeordnet werden.
Resumo:
Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.
Resumo:
The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Antigenic variation in Plasmodium falciparum erythrocyte membrane protein 1, caused by a switch in transcription of the encoding var gene, is an important feature of malaria. In this study, we quantified the relative abundance of var gene transcripts present in P. falciparum parasite clones using real-time reverse transcription-polymerase chain reaction (RT-PCR) and conventional RT-PCR combined with cloning and sequencing, with the aim of directly comparing the results obtained. When there was sufficient abundance of RNA for the real-time RT-PCR assay to be operating within the region of good reproducibility, RT-PCR and real-time RT-PCR tended to identify the same dominant transcript, although some transcript-specific issues were identified. When there were differences in the estimated relative amounts of minor transcripts, the RT-PCR assay tended to produce higher estimates than real-time RT-PCR. These results provide valuable information comparing RT-PCR and real-time RT-PCR analysis of samples with small quantities of RNA as might be expected in the analysis of field or clinical samples.
Resumo:
Background: Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology: Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings: qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4(+) cells or the CD4(+)/CD8(+) ratio. Conclusions: qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4(+) cells/mm(3) and the CD4(+)/CD8(+) ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy.
Resumo:
Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%-100%) for N. meningitidis, 97.8% (85.5%-99.9%) for S. pneumoniae, and 66.7% (9.4%-99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.
Resumo:
A real-time polymerase chain reaction (PCR) assay with fluorescence resonance energy transfer (FRET) hybridisation probes combined with melting curve analysis was developed to detect Schistosoma japonicum in experimentally infected snails and in faecal samples of infected mice. This procedure is based on melting curve analysis of a hybrid between an amplicon from the S. japonicum internal transcribed spacer region 2 sequence, which is a 192-bp S. japonicum-specific sequence, and fluorophore-labelled specific probes. Real-time FRET PCR could detect as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and a single egg inoculated in 100 mg of non-infected mouse faeces. All S. japonicum-infected snails and all faecal samples from infected mice were positive. Non-infected snails, non-infected mouse faeces and genomic DNA from other parasites were negative. This assay is rapid and has potential for epidemiological S. japonicum surveys in snails, intermediate hosts and faecal samples of final hosts.
Resumo:
La dysfonction diastolique du ventricule gauche (DDVG) réfère à une rigidité ainsi qu’à des troubles de relaxation au niveau de ce ventricule pendant la phase de la diastole. Nos connaissances sur les mécanismes moléculaires sous-jacents de cette pathologie demeurent limités. Les analyses géniques sont indispensables afin de bien identifier les voies par lesquelles cette maladie progresse. Plusieurs techniques de quantification de l’expression génique sont disponibles, par contre la RT-qPCR demeure la méthode la plus populaire vu sa haute sensibilité et de ses coûts modérés. Puisque la normalisation occupe un aspect très important dans les expériences de RT-qPCR, nous avons décidé de sélectionner des gènes montrant une haute stabilité d’expression dans un modèle de DDVG de lapin. Nous avons alors exposé 18 lapins blancs soit à une diète normale (n=7) ou bien à une diète hypercholestérolémiante additionnée de vitamine D2 (n=11). La DDVG a été évaluée par des mesures échocardiographiques. L’expression de l’ARNm de dix gènes communément utilisés dans la littérature comme normalisateur (Gapdh, Hprt1, Ppia, Sdha, Rpl5, Actb, Eef1e1, Ywhaz, Pgk1, et G6pd) a été mesurée par RT-qPCR. L’évaluation de leur stabilité a été vérifiée par les algorithmes de geNorm et Normfinder. Sdha et Gapdh ont obtenu les meilleurs scores de stabilité (M<0.2) et ont été suggérés par le geNorm, comme meilleure combinaison. Par contre, l’utilisation de Normfinder mène à la sélection d’Hprt1 et Rpl5 comme meilleure combinaison de gènes de normalisation (0.042). En normalisant par ces deux combinaisons de gènes, l’expression de l’ARNm des peptides natriurétiques de type A et B (Anp et Bnp), de la protéine chimiotactique des monocytes-1 (Mcp-1) et de la sous unité Nox-2 de la NADPH oxydase ont montré des augmentations similaires chez le groupe hypercholestérolémique comparé au groupe contrôle (p<0.05). Cette augmentation d’expressions a été corrélée avec plusieurs paramètres échocardiographiques de DDVG. À notre connaissance, c’est la première étude par laquelle une sélection de gènes de référence a été réalisée dans un modèle de lapin développant une DDVG.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The utility of quantitative Pneumocystis jirovecii PCR in clinical routine for diagnosing Pneumocystis pneumonia (PCP) in immunocompromised non-HIV patients is unknown. We analysed bronchoalveolar lavage fluid with real-time quantitative P. jirovecii PCR in 71 cases with definitive PCP defined by positive immunofluorescence (IF) tests and in 171 randomly selected patients with acute lung disease. In those patients, possible PCP cases were identified by using a novel standardised PCP probability algorithm and chart review. PCR performance was compared with IF testing, clinical judgment and the PCP probability algorithm. Quantitative P. jirovecii PCR values >1,450 pathogens·mL(-1) had a positive predictive value of 98.0% (95% CI 89.6-100.0%) for diagnosing definitive PCP. PCR values of between 1 and 1,450 pathogens·mL(-1) were associated with both colonisation and infection; thus, a cut-off between the two conditions could not be identified and diagnosis of PCP in this setting relied on IF and clinical assessment. Clinical PCP could be ruled out in 99.3% of 153 patients with negative PCR results. Quantitative PCR is useful for diagnosing PCP and is complementary to IF. PCR values of >1,450 pathogens·mL(-1) allow reliable diagnosis, whereas negative PCR results virtually exclude PCP. Intermediate values require additional clinical assessment and IF testing. On the basis of our data and for economic and logistical limitations, we propose a clinical algorithm in which IF remains the preferred first test in most cases, followed by PCR in those patients with a negative IF and strong clinical suspicion for PCP.
Resumo:
The recently discovered human bocavirus (HBoV) is the first member of the family Parpoviridae, genus Bocavirus, to be potentially associated with human disease. Several studies have identified HBoV in respiratory specimens from children with acute respiratory disease, but the full spectrum of clinical disease and the epidemiology of HBoV infection remain unclear. The availability of rapid and reliable molecular diagnostics would therefore aid future studies of this novel virus. To address this, we developed two sensitive and specific real-time TaqMan PCR assays that target the HBoV NS1 and NP-1 genes. Both assays could reproducibly detect 10 copies of a recombinant DNA plasmid containing a partial region of the HBoV genome, with a dynamic range of 8 log units (10(1) to 10(8) copies). Eight blinded clinical specimen extracts positive for HBoV by an independent PCR assay were positive by both real-time assays. Among 1,178 NP swabs collected from hospitalized pneumonia patients in Sa Kaeo Province, Thailand, 53 (4.5%) were reproducibly positive for HBoV by one or both targets. Our data confirm the possible association of HBoV infection with pneumonia and demonstrate the utility of these real-time PCR assays for HBoV detection.
Resumo:
Tropical Australian shark fisheries target two morphologically indistinguishable blacktip sharks, the Australian blacktip (Carcharhinus tilstoni) and the common blacktip (C. limbatus). Their relative contributions to northern and eastern Australian coastal fisheries are unclear because of species identification difficulties. The two species differ in their number of precaudal vertebrae, which is difficult and time consuming to obtain in the field. But, the two species can be distinguished genetically with diagnostic mutations in their mitochondrial DNA ND4 gene. A third closely related sister species, the graceful shark C. amblyrhynchoides, can also be distinguished by species-specific mutations in this gene. DNA sequencing is an effective diagnostic tool, but is relatively expensive and time consuming. In contrast, real-time high-resolution melt (HRM) PCR assays are rapid and relatively inexpensive. These assays amplify regions of DNA with species-specific genetic mutations that result in PCR products with unique melt profiles. A real-time HRM PCR species-diagnostic assay (RT-HRM-PCR) has been developed based on the mtDNA ND4 gene for rapid typing of C. tilstoni, C. limbatus and C. amblyrhynchoides. The assay was developed using ND4 sequences from 66 C. tilstoni, 33. C. limbatus and five C. amblyrhynchoides collected from Indonesia and Australian states and territories; Western Australia, the Northern Territory, Queensland and New South Wales. The assay was shown to be 100% accurate on 160 unknown blacktip shark tissue samples by full mtDNA ND4 sequencing.
Resumo:
Vesiculoviruses (VSV) are zoonotic viruses that cause vesicular stomatitis disease in cattle, horses and pigs, as well as sporadic human cases of acute febrile illness. Therefore, diagnosis of VSV infections by reliable laboratory techniques is important to allow a proper case management and implementation of strategies for the containment of virus spread. We show here a sensitive and reproducible real-time reverse transcriptase polymerase chain reaction (RT-PCR) for detection and quantification of VSV. The assay was evaluated with arthropods and serum samples obtained from horses, cattle and patients with acute febrile disease. The real-time RT-PCR amplified the Piry, Carajas, Alagoas and Indiana Vesiculovirus at a melting temperature 81.02 ± 0.8ºC, and the sensitivity of assay was estimated in 10 RNA copies/mL to the Piry Vesiculovirus. The viral genome has been detected in samples of horses and cattle, but not detected in human sera or arthropods. Thus, this assay allows a preliminary differential diagnosis of VSV infections.