1000 resultados para real e imaginário
Resumo:
This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.
Resumo:
The plasmalemmal Ca2+ adenosine triphosphatase (PMCA) is a key regulator of Ca2+ efflux in vascular smooth muscle. In these studies are developed a realtime reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay for assessing PMCA1 mRNA levels in rat primary cultured aortic myocytes. This assay detected fetal bovine serum-induced increases in PMCA1 mRNA (relative to 18S rRNA) 4, 8, and 24 h after stimulation. Early fetal bovine serum-induced increases in PMCA1 mRNA were insensitive to the Ca2+ channel blockers nifedipine, flunarizine, and SKF-96365. These studies demonstrate the feasibility of real-time RT-PCR to assess mRNA levels of PMCA1 and illustrate dynamic regulation of this Ca2+ pump isoform in rat primary cultured aortic myocytes, (C) 2000 Academic Press.
Resumo:
This paper presents a means of structuring specifications in real-time Object-Z: an integration of Object-Z with the timed refinement calculus. Incremental modification of classes using inheritance and composition of classes to form multi-component systems are examined. Two approaches to the latter are considered: using Object-Z's notion of object instantiation and introducing a parallel composition operator similar to those found in process algebras. The parallel composition operator approach is both more concise and allows more general modelling of concurrency. Its incorporation into the existing semantics of real-time Object-Z is presented.
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A macrodynamic model is proposed in which the real exchange rate and the elasticity of labour supply interact defining different trajectories of growth and income distribution in a developing economy. Growth depends on imports of capital goods which are paid with exports (there are no capital flows) and hence is constrained by equilibrium in current account. The role of the elasticity of labour supply is to prevent the real exchange rate from appreciating as the economy grows, thereby sustaining international competitiveness. The model allows for endogenous technological change and considers the impact of migration from the subsistence to the modern sector on the cumulative (Kaldor-Verdoorn) process of learning.
Resumo:
This paper aims to study the relationship between the debt level and the asset structure of Brazilian companies of the agribusiness sector, since it is considered a current and relevant discussion: to evaluate the mechanisms for fund-raising and guarantees. The methodology of Granger`s Causality test and Autoregressive Vectors was used to conduct a comparative analysis, applied to a financial database of companies with open capital of Brazilian agribusiness, in particular the agricultural sector and Fisheries and Food and Beverages in a period of 10 years (1997-2007) from quarterly series available in the database of Economatica(R). The results demonstrated that changes in leverage generate variations in the tangibility of the companies, a fact that can be explained by the large search of funding secured by fiduciary transfer of fixed assets, which facilitates access to credit by business of the Agribusiness sector, increasing the payment time and lowering interest rates.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
Background: There is a paucity of information describing the real-time 3-dimensional echocardiography (RT3DE) and dyssynchrony indexes (DIs) of a normal population. We evaluate the RT3DE DIs in a population with normal electrocardiograms and 2- and 3-dimensional echocardiographic analyses. This information is relevant for cardiac resynchronization therapy. Methods: We evaluated 131 healthy volunteers (73 were male, aged 46 +/- 14 years) who were referred for routine echocardiography; who presented normal cardiac structure on electrocardiography, 2-dimensional echocardiography, and RT3DE; and who had no history of cardiac diseases. We analyzed 3-dimensional left ventricular ejection fraction, left ventricle end-diastolic volume, left ventricle end-systolic volume, and left ventricular systolic DI% (6-, 12-, and 16-segment models). RT3DE data were analyzed by quantifying the statistical distribution (mean, median, standard deviation [SD], relative SD, coefficient of skewness, coefficient of kurtosis, Kolmogorov-Smirnov test, D`Agostino-Pearson test, percentiles, and 95% confidence interval). Results: Left ventricular ejection fraction ranged from 50% to 80% (66.1% +/- 7.1%); left ventricle end-diastolic volume ranged from 39.8 to 145 mL (79.1 +/- 24.9 mL); left ventricle end-systolic volume ranged from 12.9 to 66 mL (27 +/- 12.1 mL); 6-segment DI% ranged from 0.20% to 3.80% (1.21% +/- 0.66%), median: 1.06, relative SD: 0.5482, coefficient of skewness: 1.2620 (P < .0001), coefficient of Kurtosis: 1.9956 (P = .0039); percentile 2.5%: 0.2900, percentile 97.5%: 2.8300; 12-segment DI% ranged from 0.22% to 4.01% (1.29% +/- 0.71%), median: 1.14, relative SD: 0.95, coefficient of skewness: 1.1089 (P < .0001), coefficient of Kurtosis: 1.6372 (P = .0100), percentile 2.5%: 0.2850, percentile 97.5%: 3.0700; and 16-segment DI% ranged from 0.29% to 4.88% (1.59 +/- 0.99), median: 1.39, relative SD: 0.56, coefficient of skewness: 1.0792 (P < .0001), coefficient of Kurtosis: 0.9248 (P = .07), percentile 2.5%: 0.3750, percentile 97.5%: 3.750. Conclusion: This study allows for the quantification of RT3DE DIs in normal subjects, providing a comparison for patients with heart failure who may be candidates for cardiac resynchronization therapy. (J Am Soc Echocardiogr 2008; 21: 1229-1235)
Resumo:
Real time three-dimensional echocardiography (RT3DE) has been demonstrated to be an accurate technique to quantify left ventricular (LV) volumes and function in different patient populations. We sought to determine the value of RT3DE for evaluating patients with hypertrophic cardiomyopathy (HCM), in comparison with cardiac magnetic resonance imaging (MRI). Methods: We studied 20 consecutive patients with HCM who underwent two-dimensional echocardiography (2DE), RT3DE, and MRI. Parameters analyzed by echocardiography and MRI included: wall thickness, LV volumes, ejection fraction (LVEF), mass, geometric index, and dyssynchrony index. Statistical analysis was performed by Lin agreement coefficient, Pearson linear correlation and Bland-Altman model. Results: There was excellent agreement between 2DE and RT3DE (Rc = 0.92), 2DE and MRI (Rc = 0.85), and RT3DE and MRI (Rc = 0.90) for linear measurements. Agreement indexes for LV end-diastolic and end-systolic volumes were Rc = 0.91 and Rc = 0.91 between 2DE and RT3DE, Rc = 0.94 and Rc = 0.95 between RT3DE and MRI, and Rc = 0.89 and Rc = 0.88 between 2DE and MRI, respectively. Satisfactory agreement was observed between 2DE and RT3DE (Rc = 0.75), RT3DE and MRI (Rc = 0.83), and 2DE and MRI (Rc = 0.73) for determining LVEF, with a mild underestimation of LVEF by 2DE, and smaller variability between RT3DE and MRI. Regarding LV mass, excellent agreement was observed between RT3DE and MRI (Rc = 0.96), with bias of -6.3 g (limits of concordance = 42.22 to -54.73 g). Conclusion: In patients with HCM, RT3DE demonstrated superior performance than 2DE for the evaluation of myocardial hypertrophy, LV volumes, LVEF, and LV mass.
Resumo:
Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design: Prospective controlled laboratory animal investigation. Setting: Experimental Pulmonology Laboratory of the University of Sao Paulo. Subjects: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). Interventions. In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers, Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions. We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.
Resumo:
Background: Real time myocardial contrast echocardiography (RTMCE) is an emerging imaging modality for assessing myocardial perfusion that allows for noninvasive quantification of regional myocardial blood flow (MBF). Aim: We sought to assess the value of qualitative analysis of myocardial perfusion and quantitative assessment of myocardial blood flow (MBF) by RTMCE for predicting regional function recovery in patients with ischemic heart disease who underwent coronary artery bypass grafting (CABG). Methods: Twenty-four patients with coronary disease and left ventricular systolic dysfunction (ejection fraction < 45%) underwent RTMCE before and 3 months after CABG. RTMCE was performed using continuous intravenous infusion of commercially available contrast agent with low mechanical index power modulation imaging. Viability was defined by qualitative assessment of myocardial perfusion as homogenous opacification at rest in >= 2 segments of anterior or >= 1 segment of posterior territory. Viability by quantitative assessment of MBF was determined by receiver-operating characteristics curve analysis. Results: Regional function recovery was observed in 74% of territories considered viable by qualitative analysis of myocardial perfusion and 40% of nonviable (P = 0.03). Sensitivity, specificity, positive and negative predictive values of qualitative RTMCE for detecting regional function recovery were 74%, 60%, 77%, and 56%, respectively. Cutoff value of MBF for predicting regional function recovery was 1.76 (AUC = 0.77; 95% CI = 0.62-0.92). MBF obtained by RTMCE had sensitivity of 91%, specificity of 50%, positive predictive value of 75%, and negative predictive value of 78%. Conclusion: Qualitative and quantitative RTMCE provide good accuracy for predicting regional function recovery after CABG. Determination of MBF increases the sensitivity for detecting hibernating myocardium. (Echocardiography 2011;28:342-349).