991 resultados para reactive ion etching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New technologies and sterilization agents for heat-sensitive materials are under intense investigation. Plasma sterilization, an atoxic low-temperature substitute for conventional sterilization, uses various gases that are activated by an electrical discharge, generating reactive species that promote lethality in microorganisms. Here, assays were performed using pure O-2 and O-2 + H2O2 mixture gas plasmas against a standard load of Bacillus atrophaeus spores inoculated on glass carriers inside PVC catheters. The sterilization efficiency was studied as a function of plasma system (reactive ion etching or inductively coupled plasma), biological monitor lumen diameter, gas, radio frequency power, and sub-lethal exposition time. After sterilization, the biological monitors were disassembled and the surviving bacteria were grown in trypticase soy broth using the most probable number technique. Plasma antimicrobial activity depended on the catheter's internal diameter and radio frequency powers. The N-2 + H2O2 mixture exhibited higher microbial efficacy than pure N-2 in both plasma systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past decades, tremendous research interests have been attracted to investigate nanoparticles due to their promising catalytic, magnetic, and optical properties. In this thesis, two novel methods of nanoparticle fabrication were introduced and the basic formation mechanisms were studied. Metal nanoparticles and polyurethane nanoparticles were separately fabricated by a short-distance sputter deposition technique and a reactive ion etching process. First, a sputter deposition method with a very short target-substrate distance is found to be able to generate metal nanoparticles on the glass substrate inside a RIE chamber. The distribution and morphology of nanoparticles are affected by the distance, the ion concentration and the process time. Densely-distributed nanoparticles of various compositions are deposited on the substrate surface when the target-substrate distance is smaller than 130mm. It is much less than the atoms’ mean free path, which is the threshold in previous research for nanoparticles’ formation. Island structures are formed when the distance is increased to 510mm, indicating the tendency to form continuous thin film. The trend is different from previously-reported sputtering method for nanoparticle fabrication, where longer distance between the target and the substrate facilitates the formation of nanoparticle. A mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results. Secondly, in polyurethane nanoparticles’ fabrication, a mechanism is put forward based on the microphase separation phenomenon in block copolymer thin film. The synthesized polymers have formed dispersed and continuous phases because of the different properties between segments. With harder mechanical property, the dispersed phase is remained after RIE process while the continuous phase is etched away, leading to the formation of nanoparticles on the substrate. The nanoparticles distribution is found to be affected by the heating effect, the process time and the plasma power. Superhydrophilic property is found on samples with these two types of nanoparticles. The relationship between the nanostructure and the hydrophilicity is studied for further potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD work is focused on liquid crystal based tunable phase devices with special emphasis on their design and manufacturing. In the course of the work a number of new manufacturing technologies have been implemented in the UPM clean room facilities, leading to an important improvement in the range of devices being manufactured in the laboratory. Furthermore, a number of novel phase devices have been developed, all of them including novel electrodes, and/or alignment layers. The most important manufacturing progress has been the introduction of reactive ion etching as a tool for achieving high resolution photolithography on indium-tin-oxide (ITO) coated glass and quartz substrates. Another important manufacturing result is the successful elaboration of a binding protocol of anisotropic conduction adhesives. These have been employed in high density interconnections between ITO-glass and flexible printed circuits. Regarding material characterization, the comparative study of nonstoichiometric silicon oxide (SiOx) and silica (SiO2) inorganic alignment layers, as well as the relationship between surface layer deposition, layer morphology and liquid crystal electrooptical response must be highlighted, together with the characterization of the degradation of liquid crystal devices in simulated space mission environment. A wide variety of phase devices have been developed, with special emphasis on beam steerers. One of these was developed within the framework of an ESA project, and consisted of a high density reconfigurable 1D blaze grating, with a spatial separation of the controlling microelectronics and the active, radiation exposed, area. The developed devices confirmed the assumption that liquid crystal devices with such a separation of components, are radiation hard, and can be designed to be both vibration and temperature sturdy. In parallel to the above, an evenly variable analog beam steering device was designed, manufactured and characterized, providing a narrow cone diffraction free beam steering. This steering device is characterized by a very limited number of electrodes necessary for the redirection of a light beam. As few as 4 different voltage levels were needed in order to redirect a light beam. Finally at the Wojskowa Akademia Techniczna (Military University of Technology) in Warsaw, Poland, a wedged analog tunable beam steering device was designed, manufactured and characterized. This beam steerer, like the former one, was designed to resist the harsh conditions both in space and in the context of the shuttle launch. Apart from the beam steering devices, reconfigurable vortices and modal lens devices have been manufactured and characterized. In summary, during this work a large number of liquid crystal devices and liquid crystal device manufacturing technologies have been developed. Besides their relevance in scientific publications and technical achievements, most of these new devices have demonstrated their usefulness in the actual work of the research group where this PhD has been completed. El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de nuevos dispositivos de fase basados en cristal líquido. Actualmente se están desarrollando dispositivos basados en cristal líquido para aplicaciones diferentes a su uso habitual como displays. Poseen la ventaja de que los dispositivos pueden ser controlados por bajas tensiones y no necesitan elementos mecánicos para su funcionamiento. La fabricación de todos los dispositivos del presente trabajo se ha realizado en la cámara limpia del grupo. La cámara limpia ha sido diseñada por el grupo de investigación, es de dimensiones reducidas pero muy versátil. Está dividida en distintas áreas de trabajo dependiendo del tipo de proceso que se lleva a cabo. La cámara limpia está completamente cubierta de un material libre de polvo. Todas las entradas de suministro de gas y agua están selladas. El aire filtrado es constantemente bombeado dentro de la zona limpia, a fin de crear una sobrepresión evitando así la entrada de aire sin filtrar. Las personas que trabajan en esta zona siempre deben de estar protegidas con un traje especial. Se utilizan trajes especiales que constan de: mono, máscara, guantes de látex, gorro, patucos y gafas de protección UV, cuando sea necesario. Para introducir material dentro de la cámara limpia se debe limpiar con alcohol y paños especiales y posteriormente secarlos con nitrógeno a presión. La fabricación debe seguir estrictamente unos pasos determinados, que pueden cambiar dependiendo de los requerimientos de cada dispositivo. Por ello, la fabricación de dispositivos requiere la formulación de varios protocolos de fabricación. Estos protocolos deben ser estrictamente respetados a fin de obtener repetitividad en los experimentos, lo que lleva siempre asociado un proceso de fabricación fiable. Una célula de cristal líquido está compuesta (de forma general) por dos vidrios ensamblados (sándwich) y colocados a una distancia determinada. Los vidrios se han sometido a una serie de procesos para acondicionar las superficies internas. La célula se llena con cristal líquido. De forma resumida, el proceso de fabricación general es el siguiente: inicialmente, se cortan los vidrios (cuya cara interna es conductora) y se limpian. Después se imprimen las pistas sobre el vidrio formando los píxeles. Estas pistas conductoras provienen del vidrio con la capa conductora de ITO (óxido de indio y estaño). Esto se hace a través de un proceso de fotolitografía con una resina fotosensible, y un desarrollo y ataque posterior del ITO sin protección. Más tarde, las caras internas de los vidrios se acondicionan depositando una capa, que puede ser orgánica o inorgánica (un polímero o un óxido). Esta etapa es crucial para el funcionamiento del dispositivo: induce la orientación de las moléculas de cristal líquido. Una vez que las superficies están acondicionadas, se depositan espaciadores en las mismas: son pequeñas esferas o cilindros de tamaño calibrado (pocos micrómetros) para garantizar un espesor homogéneo del dispositivo. Después en uno de los sustratos se deposita un adhesivo (gasket). A continuación, los sustratos se ensamblan teniendo en cuenta que el gasket debe dejar una boca libre para que el cristal líquido se introduzca posteriormente dentro de la célula. El llenado de la célula se realiza en una cámara de vacío y después la boca se sella. Por último, la conexión de los cables a la célula y el montaje de los polarizadores se realizan fuera de la sala limpia (Figura 1). Dependiendo de la aplicación, el cristal líquido empleado y los demás componentes de la célula tendrán unas características particulares. Para el diseño de los dispositivos de este trabajo se ha realizado un estudio de superficies inorgánicas de alineamiento del cristal líquido, que será de gran importancia para la preparación de los dispositivos de fase, dependiendo de las condiciones ambientales en las que vayan a trabajar. Los materiales inorgánicos que se han estudiado han sido en este caso SiOx y SiO2. El estudio ha comprendido tanto los factores de preparación influyentes en el alineamiento, el comportamiento del cristal líquido al variar estos factores y un estudio de la morfología de las superficies obtenidas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A qualidade, eficácia e segurança no emprego de drogas vegetais dependem, entre outras questões, de sua qualidade sanitária. Sua origem e manuseio, em condições no geral inadequadas, propiciam biocarga elevada e abrangente, o que implica riscos para saúde. O presente trabalho objetivou conhecimento da microbiota das plantas estudadas e o desenvolvimento de estudos de sua descontaminação por plasma, tendo-se analisado os parâmetros físicos que influenciaram este processo. O projeto possibilitou a descontaminação de drogas vegetais com alta carga microbiana. Estudou-se a alcachofra (Cynara scolymus L.), camomila (Chamomilla recutita (L.) Rauschert.), ginco (Ginkgo biloba L.) e guaraná (Paullinia cupana Kunth), adotando parâmetros de processo que alegadamente permitem a integridade dos princípios ativos termossensíveis. Para isso, foi empregado reator disponível no Laboratório de Sistemas Integráveis, pertecente à Escola Politécnica da Universidade de São Paulo, em sistema com acoplamento capacitivo modo RIE (Reactive Ion Etching). Neste sistema, trabalhou-se com oxigênio adicionado de peróxido de hidrogênio. Todos os processos de descontaminação foram desenvolvidos a temperatura ambiente, sob diferentes parâmetros físicos complementares. A eficácia do processo foi investigada, empregando-se contagem de microrganismos heterotróficos, assim como pesquisa de indicadores de patogênicos (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp, Escherichia coli). As avaliações microbiológicas, quantitativas e qualitativas, assim como os estudos decorrentes dos dados obtidos, foram desenvolvidos no Laboratório de Controle Biológico da Faculdade de Ciências Farmacêuticas - USP. Os resultados obtidos após a descontaminação por plasma de oxigênio (100%), a potência de 150 W, evidenciaram redução de até 4 ciclos de aeróbicos totais. No processo por plasma peróxido de hidrogênio (20%) e oxigênio (80%), a uma potência de 150 W, observou-se a redução de até 4 ciclos log de aeróbios totais para as drogas vegetais deste estudo. A presença de substâncias químicas complexas da camomila, que contêm óleo volátil, flavonóides, aminoácidos, ácidos graxos, sais minerais, cumarinas, mucilagens e ácidos orgânicos, interferem no processo por plasma provavelmente em decorrência de a mucilagem formar um filme protetor, impedindo a difusão gasosa em ambos os processos por plasma. Assim, não só a camomila mas também o guaraná, com biocargas iniciais respectivamente de 6,6x106 UFC/g e 2,7x106 UFC/g, mantiveram-se com níveis de contaminação da mesma ordem de grandeza, após os desafios com plasma. A contagem bacteriana da alcachofra (fornecedor B), que foi submetida ao processo de descontaminação através do plasma O2 (100%), (potência de 150 W, pressão de 100 mTorr e vazão de 200 sccm), sofreu redução de dez vezes, independentemente do tempo do processo. Possivelmente este resultado, que aparenta inconsistência, decorre da ação apenas superficial do plasma. A descontaminação por processo de plasma de oxigênio e de peróxido de hidrogênio para a alcachofra (fornecedor B) não foi eficaz, devido à predominância de elementos lignificados. As amostras de alcachofra (fornecedor C), com baixa percentagem de vasos de xilema lignificados e fibras lignificadas evidenciaram a maior eficácia do processo por plasma, pois possibilitou grande difusão gasosa sobre as amostras. O estudo permitiu ainda concluir que à aplicabilidade do plasma na descontaminação de drogas vegetais depende da resistência dos microrganismos, mas igualmente das características da planta, sejam aquelas de natureza morfoanatômica, enzimática ou química. Estudos específicos devem ser desenvolvidos para cada situação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo estudar a produção e caracterização de filmes finos do tipo GeO2-Bi2O3 (BGO) produzidos por sputtering-RF com e sem nanopartículas (NPs) semicondutoras, dopados e codopados com íons de Er3+ ou Er3+/Yb3+ para a produção de amplificadores ópticos. A produção de guias de onda do tipo pedestal baseados nos filmes BGO foi realizada a partir de litografia óptica seguida por processo de corrosão por plasma e deposição física a vapor. A incorporação dos íons de terras-raras (TRs) foi verificada a partir dos espectros de emissão. Análises de espectroscopia e microscopia foram indispensáveis para otimizar os parâmetros dos processos para a construção dos guias de onda. Foi observado aumento significativo da luminescência do Er3+ (região do visível e do infravermelho), em filmes finos codopados com Er3+/Yb3+ na presença de nanopartículas de Si. As perdas por propagação mínimas observadas foram de ~1,75 dB/cm para os guias pedestal em 1068 nm. Para os guias dopados com Er3+ foi observado aumento significativo do ganho na presença de NPs de silício (1,8 dB/cm). O ganho óptico nos guias de onda amplificadores codopados com Er3+/Yb3+ e dopados com Er3+ com e sem NPs de silício também foi medido. Ganho de ~8dB/cm em 1542 nm, sob excitação em 980 nm, foi observado para os guias pedestal codopados com Er3+/Yb3+ (Er = 4,64.1019 átomos/cm3, Yb = 3,60.1020 átomos/cm3) com largura de 80 µm; para os guias codopados com concentração superior de Er3+/Yb3+ (Er = 1,34.1021 átomos/cm3, Yb = 3,90.1021 átomos/cm3) e com NPs de Si, foi observado aumento do ganho óptico de 50% para guia com largura de 100 µm. Os resultados apresentados demonstram que guias de onda baseados em germanatos, com ou sem NPs semicondutoras, são promissores para aplicações em dispositivos fotônicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the control of surface relief grating parameters and roughness for phase masks produced using e-beam lithography (EBL) and reactive ion etching (RIE). The relationships between processing conditions, grating parameters, surface roughness and the diffraction efficiency of the zeroth and the two first order transmitted beams are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the control of surface relief grating parameters and roughness for phase masks produced using e-beam lithography (EBL) and reactive ion etching (RIE). The relationships between processing conditions, grating parameters, surface roughness and the diffraction efficiency of the zeroth and the two first order transmitted beams are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the clinical/microbiological laboratory there are currently several ways of separating specific cells from a fluid suspension. Conventionally cells can be separated based on size, density, electrical charge, light-scattering properties, and antigenic surface properties. Separating cells using these parameters can require complex technologies and specialist equipment. This paper proposes new Bio-MEMS (microelectromechanical systems) filtration chips manufactured using deep reactive ion etching (DRIE) technology that, when used in conjunction with an optical microscope and a syringe, can filter and grade cells for size without the requirement for additional expensive equipment. These chips also offer great versatility in terms of design and their low cost allows them to be disposable, eliminating sample contamination. The pumping mechanism, unlike many other current filtration techniques, leaves samples mechanically and chemically undamaged. In this paper the principles behind harnessing passive pumping are explored, modelled, and validated against empirical data, and their integration into a microfluidic device to separate cells from a mixed population suspension is described. The design, means of manufacture, and results from preliminary tests are also presented. © IMechE 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 µm to allow discernible higher transmission orders, and a HWHM of 28 µm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moiré fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was fixed to a translation mount that transmitted the light source through the optical fiber, and the output intensity was measured using a silicon photodiode. The evanescent wave coupling output results for the CSWGs were measured and compared to the simulation results.