987 resultados para range edge
Resumo:
A north/south discontinuity along the northeastern coast of North America in the genetic structure of the American lobster (Homarus americanus) was detected using a suite of 13 microsatellite loci assessed using spatial analyses. Population genetic data laid over existing data on physiographic changes and sea-surface temperatures were used to reconstruct the Pleistocene distribution of this species. A postglacial northern-edge colonization model best explains the relative genetic homogeneity of the northern region compared to the southern region centred in the Gulf of Maine. Population genetic analyses identified significant structure (range of standardized theta 0-0.02) but no significant evidence for isolation by distance. The novel application of spatial genetic analyses to a marine species allowed us to interpret these results by providing a greater insight into the evolutionary factors responsible for shaping the genetic structure of this species throughout is natural range.
Resumo:
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two singlecopy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
It has often been assumed that the islands of Orkney were essentially treeless throughout much of the Holocene, with any ‘scrub’ woodland having been destroyed by Neolithic farming communities by around 3500 cal. BC. This apparently open, hyper-oceanic environment would presumably have provided quite marginal conditions for human settlement, yet Neolithic communities flourished and the islands contain some of the most spectacular remains of this period in north-west Europe. The study of new Orcadian pollen sequences, in conjunction with the synthesis of existing data, indicates that the timing of woodland decline was not synchronous across the archipelago, beginning in the Mesolithic, and that in some areas woodland persisted into the Bronze Age. There is also evidence to suggest that woodland communities in Orkney were more diverse, and therefore that a wider range of resources was available to Neolithic people, than has previously been assumed. Recent archaeological investigations have revealed evidence for timber buildings at early Neolithic settlement sites, suggesting that the predominance of stone architecture in Neolithic Orkney may not have been due to a lack of timber as has been supposed. Rather than simply reflecting adaptation to resource constraints, the reasons behind the shift from timber to stone construction are more complex and encompass social, cultural and environmental factors.
Resumo:
The European hare (Lepus europaeus) has declined throughout its native range but invaded numerous regions where it has negatively impacted native wildlife. In southern Sweden, it replaces the native mountain hare (L. timidus) through competition and hybridisation. We investigated temporal change in the invasive range of the European hare in Ireland, and compared its habitat use with the endemic Irish hare (L. timidus hibernicus). The range of the European hare was three times larger and its core range twice as large in 2012–2013 than in 2005. Its rate of radial range expansion was 0.73 km year−1 with its introduction estimated to have occurred ca. 1970. Both species utilised improved and rough grasslands and exhibited markedly similar regression coefficients with almost every land cover variable examined. Irish hares were associated with low fibre and high sugar content grass (good quality grazing) whilst the invader had a greater tolerance for low quality forage. European hares were associated with habitat patch edge density, suggesting it may be more suited to using hedgerows as diurnal resting sites than the Irish hare. Consequently, the invader had a wider niche breadth than the native but their niche overlap was virtually complete. Given the impact of the European hare on native species elsewhere, and its apparent pre-adaption for improved grasslands interspersed with arable land (a habitat that covers 70 % of Ireland), its establishment and range expansion poses a significant threat to the ecological security of the endemic Irish hare, particularly given their ecological similarities.
Resumo:
Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus), previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island.
Resumo:
This paper presents data from the English Channel area of Britain and Northern France on the spatial distribution of Lower to early Middle Palaeolithic pre-MIS5 interglacial sites which are used to test the contention that the pattern of the richest sites is a real archaeological distribution and not of taphonomic origin. These sites show a marked concentration in the middle-lower reaches of river valleys with most being upstream of, but close to, estimated interglacial tidal limits. A plant and animal database derived from Middle-Late Pleistocene sites in the region is used to estimate the potentially edible foods and their distribution in the typically undulating landscape of the region. This is then converted into the potential availability of macronutrients (proteins, carbohydrates, fats) and selected micronutrients. The floodplain is shown to be the optimum location in the nutritional landscape (nutriscape). In addition to both absolute and seasonal macronutrient advantages the floodplains could have provided foods rich in key micronutrients, which are linked to better health, the maintenance of fertility and minimization of infant mortality. Such places may have been seen as ‘good (or healthy) places’ explaining the high number of artefacts accumulated by repeated visitation over long periods of time and possible occupation. The distribution of these sites reflects the richest aquatic and wetland successional habitats along valley floors. Such locations would have provided foods rich in a wide range of nutrients, importantly including those in short supply at these latitudes. When combined with other benefits, the high nutrient diversity made these locations the optimal niche in northwest European mixed temperate woodland environments. It is argued here that the use of these nutritionally advantageous locations as nodal or central points facilitated a healthy variant of the Palaeolithic diet which permitted habitation at the edge of these hominins’ range.
Resumo:
The mode III interlaminar fracture of carbon/epoxy laminates was evaluated with the edge crack torsion (ECT) test. Three-dimensional finite element analyses were performed in order to select two specimen geometries and an experimental data reduction scheme. Test results showed considerable non-linearity before the maximum load point and a significant R-curve effect. These features prevented an accurate definition of the initiation point. Nevertheless, analyses of non-linearity zones showed two likely initiation points corresponding to GIIIc values between 850 and 1100 J/m2 for both specimen geometries. Although any of these values is realistic, the range is too broad, thus showing the limitations of the ECT test and the need for further research.
Resumo:
A numerical model using boundary element techniques is discussed which enables the insertion loss for various noise barriers of complex profile and surface cover to be calculated. The model is applied to single-foundation noise barriers to which additional side-panels are added to create fork-like profiles. Spectra of insertion loss and mean insertion loss results over a range of receiver positions for a broadband source are presented. It is concluded that ‘multiple-edged’ barriers show a significant increase in acoustic-efficiency over a simple vertical screen. Adding lightweight side-panels would be a relatively inexpensive measure, and one which could be applied to barriers already in existence. This type of barrier would also allow the height of the construction to be kept to a minimum.
Resumo:
Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Resumo:
Many species are extending their leading-edge (cool) range margins polewards in response to recent climate change. In the present study, we investigated range margin changes at the northern (cool) range margins of 1573 southerly-distributed species from 21 animal groups in Great Britain over the past four decades of climate change, updating previous work. Depending on data availability, range margin changes were examined over two time intervals during the past four decades. For four groups (birds, butterflies, macromoths, and dragonflies and damselflies), there were sufficient data available to examine range margin changes over both time intervals. We found that most taxa shifted their northern range margins polewards and this finding was not greatly influenced by changes in recorder effort. The mean northwards range margin change in the first time interval was 23 km per decade (N = 13 taxonomic groups) and, in the second interval, was 18 km per decade (N = 16 taxonomic groups) during periods when the British climate warmed by 0.21 and 0.28 °C per decade, respectively. For the four taxa examined over both intervals, there was evidence for higher rate of range margin change in the more recent time interval in the two Lepidoptera groups. Our analyses confirm a continued range margin shift polewards in a wide range of taxonomic groups.
Resumo:
This study aims at the determination of a Fram Strait cyclone track and of the cyclone’s impact on ice edge, drift, divergence, and concentration. A 24 h period on 13–14 March 2002 framed by two RADARSAT images is analyzed. Data are included from autonomous ice buoys, a research vessel, Special Sensor Microwave Imager (SSM/I) and QuikSCAT satellite, and the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model. During this 24 h period the cyclone moved northward along the western ice edge in the Fram Strait, crossed the northern ice edge, made a left-turn loop with 150 km diameter over the sea ice, and returned to the northern ice edge. The ECMWF analysis places the cyclone track 100 km too far west over the sea ice, a deviation which is too large for representative sea ice simulations. On the east side of the northward moving cyclone, the ice edge was pushed northward by 55 km because of strong winds. On the rear side, the ice edge advanced toward the open water but by a smaller distance because of weaker winds there. The ice drift pattern as calculated from the ice buoys and the two RADARSAT images is cyclonically curved around the center of the cyclone loop. Ice drift divergence shows a spatial pattern with divergence in the loop center and a zone of convergence around. Ice concentration changes as retrieved from SSM/I data follow the divergence pattern such that sea ice concentration increased in areas of divergence and decreased in areas of convergence.
Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions
Resumo:
We investigate the optical properties of edge-fiinctionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)