968 resultados para random phase approximation
Resumo:
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein introducing appropriate rotation between the constellations of the two users is shown to maximally enlarge the CC capacity region. Such a Non-Orthogonal Multiple Access (NO-MA) method of enlarging the CC capacity region is referred to as Constellation Rotation (CR) scheme. In this paper, we propose a novel NO-MA technique called Constellation Power Allocation (CPA) scheme to enlarge the CC capacity region of two-user GMAC. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced ML decoding complexity for some QAM constellations. For the CR scheme, code pairs approaching the CC sum capacity are known only for the class of PSK and PAM constellations but not for QAM constellations. In this paper, we design code pairs with the CPA scheme to approach the CC sum capacity for 16-QAM constellations. Further, the CPA scheme used for two-user GMAC with random phase offsets is shown to provide larger CC sum capacities at high SNR values compared to the CR scheme.
Resumo:
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.
Resumo:
We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.
Resumo:
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.
Resumo:
利用光传输理论对ICF驱动器中使用的光谱色散平滑(SSD)技术作了理论分析,并结合典型的随机相位板(RPP)技术,用计算机模拟了使用光谱色散平滑技术前后激光靶面辐照不均匀性的变化及其技术中不同带宽和调制频率下激光靶面辐照不均匀性的变化。
Resumo:
World-Wide Web (WWW) services have grown to levels where significant delays are expected to happen. Techniques like pre-fetching are likely to help users to personalize their needs, reducing their waiting times. However, pre-fetching is only effective if the right documents are identified and if user's move is correctly predicted. Otherwise, pre-fetching will only waste bandwidth. Therefore, it is productive to determine whether a revisit will occur or not, before starting pre-fetching. In this paper we develop two user models that help determining user's next move. One model uses Random Walk approximation and the other is based on Digital Signal Processing techniques. We also give hints on how to use such models with a simple pre-fetching technique that we are developing.
Resumo:
Numerical simulations have been used to study broad-band supercontinuum generation in optical fibers with dispersion and nonlinearity characteristics typical and photonic crystal or tapered fibers structures. The simulations include optical shock and Raman nonlinearity terms, with quantum noise taken into account phenomenologically by including in the input field a noise seed of one photon per mode with random phase. For input pulses of 150-fs duration injected in the anomalous dispersion regime, the effect of modulational instability is shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinuum. The spectral phase fluctuations are quantified by performing multiple simulations and calculating both the standard deviation of the phase and, more rigorously, the degree of first-order coherence as a function of wavelength across the spectrum. By performing simulations over a range of input pulse durations and wavelengths, we can identify the conditions under which coherent supercontinua with a well-defined spectral phase are generated.
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of electron number density following 248 nm laser ablation of a magnesium target. Fringe shifts were measured as a function of laser power density for a circular spot obtained using a random phase plate. Line averaged electron number densities were obtained at delay times up to ∼100 ns after the laser pulse. Density profiles normal to the target surface were recorded for power densities on target in the range 125–300 MW cm−2.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Time-dependent density-functional theory is a rather accurate and efficient way to compute electronic excitations for finite systems. However, in the macroscopic limit (systems of increasing size), for the usual adiabatic random-phase, local-density, or generalized-gradient approximations, one recovers the Kohn-Sham independent-particle picture, and thus the incorrect band gap. To clarify this trend, we investigate the macroscopic limit of the exchange-correlation kernel in such approximations by means of an algebraical analysis complemented with numerical studies of a one-dimensional tight-binding model. We link the failure to shift the Kohn-Sham spectrum of these approximate kernels to the fact that the corresponding operators in the transition space act only on a finite subspace.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Piezoelectric ceramics, such as PZT, can generate subnanometric displacements, bu t in order to generate multi- micrometric displacements, they should be either driven by high electric voltages (hundreds of volts ), or operate at a mechanical resonant frequency (in narrow band), or have large dimensions (tens of centimeters). A piezoelectric flextensional actuator (PFA) is a device with small dimensions that can be driven by reduced voltages and can operate in the nano- and micro scales. Interferometric techniques are very adequate for the characterization of these devices, because there is no mechanical contact in the measurement process, and it has high sensitivity, bandwidth and dynamic range. A low cost open-loop homodyne Michelson interferometer is utilized in this work to experimentally detect the nanovi brations of PFAs, based on the spectral analysis of the interfero metric signal. By employing the well known J 1 ...J 4 phase demodulation method, a new and improved version is proposed, which presents the following characteristics: is direct, self-consistent, is immune to fading, and does not present phase ambiguity problems. The proposed method has resolution that is similar to the modified J 1 ...J 4 method (0.18 rad); however, differently from the former, its dynamic range is 20% larger, does not demand Bessel functions algebraic sign correction algorithms and there are no singularities when the static phase shift between the interferometer arms is equal to an integer multiple of /2 rad. Electronic noise and random phase drifts due to ambient perturbations are taken into account in the analysis of the method. The PFA nanopositioner characterization was based on the analysis of linearity betw een the applied voltage and the resulting displacement, on the displacement frequency response and determination of main resonance frequencies.
Resumo:
We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.