972 resultados para random effect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif de cette étude était de déterminer l’impact d’une infection intra-mammaire (IIM) subclinique causée par staphylocoque coagulase-négative (SCN) ou Staphylococcus aureus diagnostiquée durant le premier mois de lactation chez les taures sur le comptage de cellules somatiques (CCS), la production laitière et le risque de réforme durant la lactation en cours. Des données bactériologiques provenant d’échantillons de lait composites de 2 273 taures Holstein parmi 50 troupeaux ont été interprétées selon les recommandations du National Mastitis Council. Parmi 1 691 taures rencontrant les critères de sélection, 90 (5%) étaient positives à S. aureus, 168 (10%) étaient positives à SCN et 153 (9%) étaient négatives (aucun agent pathogène isolé). Le CCS transformé en logarithme népérien (lnCCS) a été modélisé via une régression linéaire avec le troupeau comme effet aléatoire. Le lnCCS chez les groupes S. aureus et SCN était significativement plus élevé que dans le groupe témoin de 40 à 300 jours en lait (JEL) (P < 0.0001 pour tous les contrastes). La valeur journalière du lnSCC chez les groupes S. aureus et SCN était en moyenne 1.2 et 0.6 plus élevé que le groupe témoin respectivement. Un modèle similaire a été réalisé pour la production laitière avec l’âge au vêlage, le trait génétique lié aux parents pour la production laitière et le logarithme népérien du JEL de la pesée inclus. La production laitière n’était pas statistiquement différente entre les 3 groupes de culture de 40 à 300 JEL (P ≥ 0.12). Les modèles de survie de Cox ont révélé que le risque de réforme n’était pas statistiquement différent entre le groupe S. aureus ou SCN et le groupe témoin (P ≥ 0.16). La prévention des IIM causées par SCN et S. aureus en début de lactation demeure importante étant donné leur association avec le CCS durant la lactation en cours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Huit cent trente et un troupeaux de vaches laitières répartis dans 5 états américains ont été enrôlés dans une étude de cohorte prospective. Un modèle d’équations d'estimation généralisées a été utilisé pour étudier l'association entre les signes cliniques et la détection de salmonelles dans les fèces des animaux soupçonnés de salmonellose clinique. La sensibilité et la spécificité de la culture bactériologique ont été estimées à l’aide d’un modèle de classes latentes. Dix-huit pour cent des 874 échantillons provenant de veaux et 29% des 1479 échantillons de vaches adultes étaient positifs pour Salmonella spp. Il n’a pas été possible d’établir une association claire entre les différents signes cliniques observés et la détection de salmonelles. Les 2 sérotypes les plus fréquemment isolés étaient Typhimurium et Newport. La probabilité de détecter des salmonelles était plus élevée chez les veaux où un autre agent entéropathogène était également détecté. La proportion d’échantillons positifs était plus élevée parmi les vaches ayant reçu des antibiotiques dans les jours précédant l’échantillonnage. La sensibilité de la culture a été estimée à 0,48 (intervalle de crédibilité à 95% [ICr95%]: 0,22-0,95) pour les veaux et 0,78 (ICr95%: 0,55-0,99) pour les vaches. La spécificité de la culture était de 0,94 (ICr95%: 0,87-1,00) pour les veaux et de 0,96 (ICr95%: 0,90-1,00) pour les vaches. Malgré une sensibilité imparfaite, la culture bactériologique demeure utile pour obtenir une meilleure estimation de la probabilité post-test de salmonellose clinique chez un bovin laitier, par rapport à la probabilité estimée suite au seul examen clinique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robert Bourbeau, département de démographie (Directeur de recherche) Marianne Kempeneers, département de sociologie (Codirectrice de recherche)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: A través de los años se ha reconocido como la principal causa de enfermedades complejas, como lo son las enfermedades autoinmunes (EAI), la interacción entre los factores genéticos, los epigenéticos y el ambiente. Dentro de los factores ambientales están los solventes orgánicos (SO), compuestos químicos ampliamente utilizados en lavanderías (ej. tetracloroetileno, percloroetileno), pinturas (ej. tolueno y turpentina), removedores de esmalte para uñas, pegamentos (ej. acetona, metil acetato, etil acetato), removedores de manchas (ej. hexano, petróleo, eter), detergentes (ej. citrus terpeno), perfumes (etanol), y en la síntesis de esmaltes, entre otros. Teniendo en cuenta la controversia que existe aún sobre la asociación entre los SO y las EAI, evaluamos la evidencia a través de una revisión sistemática de la literatura y un meta-análisis. Métodos y resultados: La búsqueda sistemática se hizo en el PubMed, SCOPUS , SciELO y LILACS con artículos publicados hasta febrero de 2012. Se incluyó cualquier tipo de estudio que utilizara criterios aceptados para la definición de EAI y que tuvieran información sobre la exposición SO. De un total de 103 artículos, 33 fueron finalmente incluidos en el meta -análisis. Los OR e intervalos de confianza del 95 % (IC) se obtuvieron mediante el modelo de efectos aleatorios. Un análisis de sensibilidad confirmó que los resultados no son susceptibles a la limitación de los datos incluidos. El sesgo de publicación fue trivial. La exposición a SO se asoció a esclerosis sistémica, vasculitis primaria y esclerosis múltiple de forma individual y también para todas las EAI consideradas como un rasgo común (OR: 1.54 , IC 95 % : 1,25 a 1,92 ; valor de p 0.001). Conclusión: La exposición a SO es un factor de riesgo para el desarrollo de EAI. Como corolario, los individuos con factores de riesgo no modificables (es decir, autoinmunidad familiar o con factores genéticos identificados) deben evitar toda exposición a SO con el fin de evitar que aumente su riesgo de desarrollar una EAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Genetic and epigenetic factors interacting with the environment over time are the main causes of complex diseases such as autoimmune diseases (ADs). Among the environmental factors are organic solvents (OSs), which are chemical compounds used routinely in commercial industries. Since controversy exists over whether ADs are caused by OSs, a systematic review and meta-analysis were performed to assess the association between OSs and ADs. Methods and Findings: The systematic search was done in the PubMed, SCOPUS, SciELO and LILACS databases up to February 2012. Any type of study that used accepted classification criteria for ADs and had information about exposure to OSs was selected. Out of a total of 103 articles retrieved, 33 were finally included in the meta-analysis. The final odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by the random effect model. A sensitivity analysis confirmed results were not sensitive to restrictions on the data included. Publication bias was trivial. Exposure to OSs was associated to systemic sclerosis, primary systemic vasculitis and multiple sclerosis individually and also to all the ADs evaluated and taken together as a single trait (OR: 1.54; 95% CI: 1.25-1.92; p-value, 0.001). Conclusion: Exposure to OSs is a risk factor for developing ADs. As a corollary, individuals with non-modifiable risk factors (i.e., familial autoimmunity or carrying genetic factors) should avoid any exposure to OSs in order to avoid increasing their risk of ADs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: to evaluate the efficacy and safety of human immunoglobulin versus plasmapheresis in the management of autoimmune neurologic diseases. Likewise, length of hospital stay and duration of ventilator support were compared. Methods: Randomized controlled trials and analytical observational studies of more than 10 cases, were reviewed. Cochrane Neuromuscular Disease Group trials, MEDLINE, EMBASE, HINARI Ovid, the Database of abstracts of reviews of effectiveness and the Economic evaluation Database were searched as data source. Reference lists were examined for further relevant articles. A random-effect model was used to derive a pooled risk ratio. Results: 725 articles were found and 27 met the criteria for a population studied of 4717 cases: 14 articles were about Guillain Barré syndrome, 10 of Myasthenia Gravis, one of Sydenham Chorea, one of Chronic inflammatory demyelinating polyneuropathy, and one of PANDAS. No evidence was found in favor of any of the two treatments as regards effectiveness (OR 0.94, IC 0.63 – 1.41, p= 0.77) or ventilator support time; IGIV had a significant better safety profile than plasmapheresis (OR 0.70, IC 0.51 – 0.96, p= 0.03) and patients needed less time of hospital stay (p=0.03). Conclusions: There is no evidence for superiority in the effectiveness of immunoglobulin or plasmapheresis in the management of autoimmune neurologic diseases. Nevertheless, patients treated with immunoglobulin have statistically significant less adverse effects, a shorter hospital stay and a tendency of less ventilator support time. These premises could lead to fewer costs for health services but an economic study should be done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to introduce a diVerent approach, called the ecological-longitudinal, to carrying out pooled analysis in time series ecological studies. Because it gives a larger number of data points and, hence, increases the statistical power of the analysis, this approach, unlike conventional ones, allows the complementation of aspects such as accommodation of random effect models, of lags, of interaction between pollutants and between pollutants and meteorological variables, that are hardly implemented in conventional approaches. Design—The approach is illustrated by providing quantitative estimates of the short-termeVects of air pollution on mortality in three Spanish cities, Barcelona,Valencia and Vigo, for the period 1992–1994. Because the dependent variable was a count, a Poisson generalised linear model was first specified. Several modelling issues are worth mentioning. Firstly, because the relations between mortality and explanatory variables were nonlinear, cubic splines were used for covariate control, leading to a generalised additive model, GAM. Secondly, the effects of the predictors on the response were allowed to occur with some lag. Thirdly, the residual autocorrelation, because of imperfect control, was controlled for by means of an autoregressive Poisson GAM. Finally, the longitudinal design demanded the consideration of the existence of individual heterogeneity, requiring the consideration of mixed models. Main results—The estimates of the relative risks obtained from the individual analyses varied across cities, particularly those associated with sulphur dioxide. The highest relative risks corresponded to black smoke in Valencia. These estimates were higher than those obtained from the ecological-longitudinal analysis. Relative risks estimated from this latter analysis were practically identical across cities, 1.00638 (95% confidence intervals 1.0002, 1.0011) for a black smoke increase of 10 μg/m3 and 1.00415 (95% CI 1.0001, 1.0007) for a increase of 10 μg/m3 of sulphur dioxide. Because the statistical power is higher than in the individual analysis more interactions were statistically significant,especially those among air pollutants and meteorological variables. Conclusions—Air pollutant levels were related to mortality in the three cities of the study, Barcelona, Valencia and Vigo. These results were consistent with similar studies in other cities, with other multicentric studies and coherent with both, previous individual, for each city, and multicentric studies for all three cities

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crude prevalence of antibodies to Babesia bovis infection in cattle was estimated by serology using indirect ELISA during the period January to April, 1999. Sera were obtained from 1395 dairy cattle (of all ages, sexes and breeds) on smallholder farms, the majority being kept under a zero grazing regime. The crude prevalence of antibodies to Babesia bovis was 6 % for Tanga and 12 % for Iringa. The forces of infection based on the age sero-prevalence profile, were estimated at six for Iringa and four for Tanga per 100 cattle years-risk, respectively. Using random effect logistic regression as the analytical method, the factors (variables) of age, source of animals and geographic location were hypothesised to be associated with sero-positivity of Babesia bovis in the two regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a hierarchical Bayesian analysis for a predator-prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a generalized leverage matrix useful for the identification of influential units and observations in linear mixed models and show how a decomposition of this matrix may be employed to identify high leverage points for both the marginal fitted values and the random effect component of the conditional fitted values. We illustrate the different uses of the two components of the decomposition with a simulated example as well as with a real data set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.