997 resultados para rainfall assessment
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Resumo:
Solar radiation estimates with clear sky models require estimations of aerosol data. The low spatial resolution of current aerosol datasets, with their remarkable drift from measured data, poses a problem in solar resource estimation. This paper proposes a new downscaling methodology by combining support vector machines for regression (SVR) and kriging with external drift, with data from the MACC reanalysis datasets and temperature and rainfall measurements from 213 meteorological stations in continental Spain. The SVR technique was proven efficient in aerosol variable modeling. The Linke turbidity factor (TL) and the aerosol optical depth at 550 nm (AOD 550) estimated with SVR generated significantly lower errors in AERONET positions than MACC reanalysis estimates. The TL was estimated with relative mean absolute error (rMAE) of 10.2% (compared with AERONET), against the MACC rMAE of 18.5%. A similar behavior was seen with AOD 550, estimated with rMAE of 8.6% (compared with AERONET), against the MACC rMAE of 65.6%. Kriging using MACC data as an external drift was found useful in generating high resolution maps (0.05° × 0.05°) of both aerosol variables. We created high resolution maps of aerosol variables in continental Spain for the year 2008. The proposed methodology was proven to be a valuable tool to create high resolution maps of aerosol variables (TL and AOD 550). This methodology shows meaningful improvements when compared with estimated available databases and therefore, leads to more accurate solar resource estimations. This methodology could also be applied to the prediction of other atmospheric variables, whose datasets are of low resolution.
Resumo:
One of the main concerns when conducting a dam test is the acute determination of the hydrograph for a specific flood event. The use of 2D direct rainfall hydraulic mathematical models on a finite elements mesh, combined with the efficiency of vector calculus that provides CUDA (Compute Unified Device Architecture) technology, enables nowadays the simulation of complex hydrological models without the need for terrain subbasin and transit splitting (as in HEC-HMS). Both the Spanish PNOA (National Plan of Aereal Orthophotography) Digital Terrain Model GRID with a 5 x 5 m accuracy and the CORINE GIS Land Cover (Coordination of INformation of the Environment) that allows assessment of the ground roughness, provide enough data to easily build these kind of models
Resumo:
The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]
Resumo:
Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.
Resumo:
The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.
Resumo:
Acknowledgements: We thank Iain Malcolm of Marine Scotland Science for access to data from the Girnock and the Scottish Environment Protection Agency for historical stage-discharge relationships. CS contributions on this paper were in part supported by the NERC/JPI SIWA project (NE/M019896/1).
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.
Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti / Al ratios during March–April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in July–September 2008 and a concurrent increase in the flux of GDGT-0. Complete absence of crenarchaeol in settling particles during the austral summer following this bloom indicates that no Thaumarchaeota bloom developed at that time. We suggest that increased nutrient availability, derived from the eroded soil washed into the lake, caused the massive bloom of diatoms and that the higher concentrations of ammonium (formed from breakdown of this algal matter) resulted in a replacement of nitrifying Thaumarchaeota, which in typical years prosper during the austral summer, by nitrifying bacteria. The decomposing dead diatoms passing through the suboxic zone of the water column probably also formed a substrate for GDGT-0-producing archaea. Hence, through a cascade of events, intensive rainfall affects thaumarchaeotal abundance, resulting in high BIT index values.
Decade-scale BIT index fluctuations in Lake Challa sediments exactly match the timing of three known episodes of prolonged regional drought within the past 250 years. Additionally, the principal trends of inferred rainfall variability over the past two millennia are consistent with the hydroclimatic history of equatorial East Africa, as has been documented from other (but less well dated) regional lake records. We therefore propose that variation in GDGT production originating from the episodic recurrence of strong soil-erosion events, when integrated over (multi-)decadal and longer timescales, generates a stable positive relationship between the sedimentary BIT index and monsoon rainfall at Lake Challa. Application of this paleoprecipitation proxy at other sites requires ascertaining the local processes which affect the productivity of crenarchaeol by Thaumarchaeota and brGDGTs.
Resumo:
Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.
Resumo:
The aim of this study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with other fixation methods in mandibular symphysis fractures. Ten polyurethane mandibles were allocated to each group and fixed as follows: group PRP, 2 perpendicular miniplates; group PLL, 1 miniplate and 1 plate, parallel; and group CS, 2 cannulated screws. Vertical linear loading tests were performed. The differences between mean values were analyzed with the Tukey test. The photoelastic test was carried out using a polariscope. The results revealed differences between the CS and PRP groups at 1, 3, 5, and 10 millimeters of displacement. The photoelastic test confirmed higher stress concentration in all groups close to the mandibular base, whereas the CS group showed it throughout the region assessed. Conical cannulated screws performed well in mechanical and photoelastic tests.
Resumo:
Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.
Resumo:
The aim of this cephalometric study was to evaluate the influence of the sagittal skeletal pattern on the 'Y-axis of growth' measurement in patients with different malocclusions. Lateral head films from 59 patients (mean age 16y 7m, ranging from 11 to 25 years) were selected after a subjective analysis of 1630 cases. Sample was grouped as follows: Group 1 - class I facial pattern; group 2 - class II facial pattern; and Group 3 - class III facial pattern. Two angular measurements, SNGoGn and SNGn, were taken in order to determine skeletal vertical facial pattern. A logistic regression with errors distributed according to a binomial distribution was used to test the influence of the sagittal relationship (Class I, II, III facial patterns) on vertical diagnostic measurement congruence (SNGoGn and SNGn). RESULTS show that the probability of congruence between the patterns SNGn and SNGoGn was relatively high (70%) for group 1, but for groups II (46%) and III (37%) this congruence was relatively low. The use of SNGn appears to be inappropriate to determine the vertical facial skeletal pattern of patients, due to Gn point shifting throughout sagittal discrepancies. Clinical Significance: Facial pattern determined by SNGn must be considered carefully, especially when severe sagittal discrepancies are present.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.