863 resultados para pupil filter
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
Background In Pacific Island Countries (PICs) the epidemiology of dengue is characterized by long-term transmission of a single dengue virus (DENV) serotype. The emergence of a new serotype in one island country often indicates major outbreaks with this serotype will follow in other PICs. Objectives Filter paper (FP) cards on which whole blood or serum from dengue suspected patients had been dried was evaluated as a method for transportation of this material by standard mail delivery throughout the Pacific. Study design Twenty-two FP-dried whole blood samples collected from patients in New Caledonia and Wallis & Futuna Islands, during DENV-1 and DENV-4 transmission, and 76 FP-dried sera collected from patients in Yap State, Majuro (Republic of Marshall Islands), Tonga and Fiji, before and during outbreaks of DENV-2 in Yap State and DENV-4 in Majuro, were tested for the presence of DENV RNA, by serotype specific RT-PCR, at the Institut Louis Malardé in French Polynesia. Results The serotype of DENV could be determined, by a variety of RT-PCR procedures, in the FP-dried samples after more than three weeks of transport at ambient temperatures. In most cases, the sequencing of the envelope gene to genotype the viruses also was possible. Conclusions The serotype and genotype of DENV can be determined from FP-dried serum or whole blood samples transported over thousands of kilometers at ambient, tropical, temperatures. This simple and low-cost approach to virus identification should be evaluated in isolated and resource poor settings for surveillance for a range of significant viral diseases.
Resumo:
Purpose to evaluate the effects of the wearer’s pupil size and spherical aberration on visual performance with centre-near, aspheric multifocal contact lenses (MFCLs). The advantage of binocular over monocular vision was also investigated. Methods Twelve young volunteers, with an average age of 27±5 years, participated in the study. LogMAR Visual Acuity (VA) was measured under cycloplegia for a range of defocus levels (from +3.0 to -3.0D, in 0.5D steps) with no correction and with three aspheric MFCLs (Air Optix Aqua Multifocal, Ciba Vision, Duluth, GA, US) with a centre-near design, providing correction for “Low”, “Med” and “High” near demands. Measurements were performed for all combinations of the following conditions: i) artificial pupils of 6mm and 3mm diameter, ii) binocular and monocular (dominant eye) vision. Depth-of-focus (DOF) was calculated from the VA vs. defocus curves. Ocular aberrations under cycloplegia were measured using iTrace. Results VA at -3.0D defocus (simulating near performance) was statistically higher for the 3mm than for the 6mm pupil (p=0.006), and for binocular rather than for monocular vision (p<0.001). Similarly, DOF was better for the 3mm pupil (p=0.002) and for binocular viewing conditions (p<0.001, ANOVA). Both VA at –3.0D defocus and DOF increased as the “addition” of the MFCL correction increased. Finally, with the centre-near MFCLs a linear correlation was found between VA at –3.0D defocus and the wearer’s ocular spherical aberration (R2=0.20 p<0.001 for 6mm data), with the eyes exhibiting the higher positive spherical aberration experiencing lower VAs. By contrast, no correlation was found between VA and spherical aberration at 0.00D defocus (distance vision). Conclusions Both near VA and depth-of-focus improve with these MFCLs, with the effects being more pronounced for small pupils and binocular than for monocular vision. Coupling of the wearer’s ocular spherical aberration with the aberration profiles provided by MFCLs affects their functionality.
Resumo:
Purpose: Changes in pupil size and shape are relevant for peripheral imagery by affecting aberrations and how much light enters and/or exits the eye. The purpose of this study is to model the pattern of pupil shape across the complete horizontal visual field and to show how the pattern is influenced by refractive error. Methods: Right eyes of thirty participants were dilated with 1% cyclopentolate and images were captured using a modified COAS-HD aberrometer alignment camera along the horizontal visual field to ±90°. A two lens relay system enabled fixation at targets mounted on the wall 3m from the eye. Participants placed their heads on a rotatable chin rest and eye rotations were kept to less than 30°. Best-fit elliptical dimensions of pupils were determined. Ratios of minimum to maximum axis diameters were plotted against visual field angle. Results: Participants’ data were well fitted by cosine functions, with maxima at (–)1° to (–)9° in the temporal visual field and widths 9% to 15% greater than predicted by the cosine of the field angle . Mean functions were 0.99cos[( + 5.3)/1.121], R2 0.99 for the whole group and 0.99cos[( + 6.2)/1.126], R2 0.99 for the 13 emmetropes. The function peak became less temporal, and the width became smaller, with increase in myopia. Conclusion: Off-axis pupil shape changes are well described by a cosine function which is both decentered by a few degrees and flatter by about 12% than the cosine of the viewing angle, with minor influences of refraction.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
Texture information in the iris image is not uniform in discriminatory information content for biometric identity verification. The bits in an iris code obtained from the image differ in their consistency from one sample to another for the same identity. In this work, errors in bit strings are systematically analysed in order to investigate the effect of light-induced and drug-induced pupil dilation and constriction on the consistency of iris texture information. The statistics of bit errors are computed for client and impostor distributions as functions of radius and angle. Under normal conditions, a V-shaped radial trend of decreasing bit errors towards the central region of the iris is obtained for client matching, and it is observed that the distribution of errors as a function of angle is uniform. When iris images are affected by pupil dilation or constriction the radial distribution of bit errors is altered. A decreasing trend from the pupil outwards is observed for constriction, whereas a more uniform trend is observed for dilation. The main increase in bit errors occurs closer to the pupil in both cases.
Resumo:
Purpose: To determine the relative contributions of rods, cones and melanopsin to pupil responses in humans using temporal sinusoidal stimulation for light levels spanning the low mesopic to photopic range. Methods: A four-primary Ganzfeld photostimulator controlled flicker stimulations at seven light levels (-2.7 to 2 log cd/m2) and five frequencies (0.5 to 8Hz). Pupil diameter was measured using a high-resolution eyetracker. Three kinds of sinusoidal photoreceptor modulations were generated using silent substitution: 1) rod modulation, 2) cone modulation, and 3) combined rod and cone modulation in phase (Experiment 1) or phase shifted (Experiment 2) from a fixed rod phase. The melanopsin excitation was computed for each condition. A vector sum model was used to estimate the relative contribution of rods, cones and melanopsin to the pupil response. Results: From Experiment 1, the pupil frequency response peaked at 1Hz at two mesopic light levels for the three modulation conditions. Analyzing the rod-cone phase difference for the combined modulations (Experiment 2) identified a V-shaped response amplitude with a minimum between 135° and 180°. The pupil response phases increased as cone modulation phase increased. The pupil amplitude increased with increasing light level for cone and combined in-phase rod and cone modulation, but not for the rod modulation. Conclusions: These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.
Resumo:
PURPOSE. To investigate effects of luminance and accommodation stimuli on pupil size and pupil center location and their implications for progressive addition lens wear. METHODS. Participants were young and older adult groups (n=20, 22±2 years, age range 18-25 years; n=19, 49±4 years, 45-58 years). A wave aberrometer included a relay system to allow a 12.5°x11° background for the internal fixation target. Participants viewed the target under a matrix of conditions with luminance levels 0.01, 3.7, 120 and 6100 cd/m² and with accommodation stimuli up to 6 diopters in 2 diopter steps. Pupil sizes and their centers, relative to limbus centers, were determined from anterior eye images. RESULTS. With luminance increase, reduction in pupil size was accentuated by increase in accommodation stimulus in the young, but not in the older, group. As luminance increased, pupil center location altered. This was nasally in both groups with an average shift of approximately 0.12mm. Relative to the lowest stimulus condition, the mean of the maximum absolute pupil center shifts was 0.26±0.08mm for both groups with individual shifts up to 0.5mm, findings consistent with previous studies. There was no significant effect of accommodation on pupil center locations for either age group, or evidence that location was influenced by the combination of luminance and accommodation stimulus that resulted in any particular pupil size. CONCLUSIONS. Variations in luminance and accommodation influence pupil size, but only the former affects pupil center location significantly. Pupil center shifts are too small to be of concern in fitting progressive addition lenses.
Resumo:
Purpose: To investigate effects of pupil shifts, occurring with changes in luminance and accommodation stimuli, on refraction components and higher-order aberrations. Method: Participants were young and older groups (n=20, 22±2 years, age range 18–25 years; n=19, 49±4 years, 45–58 years). Aberrations/refractions at 4 mm and 3 mm diameters were compared between centered and decentered pupils for low (background 0.01cd/m², 0D), and high (6100cd/m², 4D or 6D) stimuli. Decentration was the difference between pupil centers for low and high stimuli. Clinical important changes with decentration were: M ±0.50D or ±0.25D, J180 and J45 ±0.25D or ±0.125D, HORMS ±0.05m, C(3, 1) ±0.05m, C(4, 0) ±0.05m. Results: Because of small pupil shifts in most participants (mean 0.26mm), there were few important changes in most refraction components and higher-order aberration terms. However, M changed by >0.25 D for a third of participants with 4mm pupils. When determining refractions from 2nd-6th order aberration coefficients, the more stringent criteria gave 76/ 534 (14%) possible important changes. Some participants had large pupil shifts with considerable aberration changes. Comparisons at the high stimulus were possible for only 11 participants because of small pupils. When refractions were determined from 2nd order aberration coefficients only, there were only 35 (7%) important changes for the more stringent criteria. Conclusion: Usually pupil shifts with changes in stimulus conditions have little influence on aberrations, but they can with high shifts. The number of aberrations orders that are considered as contributing to refraction influences the proportion of cases that might be considered clinically important.
Resumo:
Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.
Resumo:
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.