994 resultados para protein microarray
Resumo:
BACKGROUND: The diagnosis of malignant hematologic diseases has become increasingly complex during the last decade. It is based on the interpretation of results from different laboratory analyses, which range from microscopy to gene expression profiling. Recently, a method for the analysis of RNA phenotypes has been developed, the nCounter technology (Nanostring® Technologies), which allows for simultaneous quantification of hundreds of RNA molecules in biological samples. We evaluated this technique in a Swiss multi-center study on eighty-six samples from acute leukemia patients. METHODS: mRNA and protein profiles were established for normal peripheral blood and bone marrow samples. Signal intensities of the various tested antigens with surface expression were similar to those found in previously performed Affymetrix microarray analyses. Acute leukemia samples were analyzed for a set of twenty-two validated antigens and the Pearson Correlation Coefficient for nCounter and flow cytometry results was calculated. RESULTS: Highly significant values between 0.40 and 0.97 were found for the twenty-two antigens tested. A second correlation analysis performed on a per sample basis resulted in concordant results between flow cytometry and nCounter in 44-100% of the antigens tested (mean = 76%), depending on the number of blasts present in a sample, the homogeneity of the blast population, and the type of leukemia (AML or ALL). CONCLUSIONS: The nCounter technology allows for fast and easy depiction of a mRNA profile from hematologic samples. This technology has the potential to become a valuable tool for the diagnosis of acute leukemias, in addition to multi-color flow cytometry.
Resumo:
Currently, numerous high-throughput technologies are available for the study of human carcinomas. In literature, many variations of these techniques have been described. The common denominator for these methodologies is the high amount of data obtained in a single experiment, in a short time period, and at a fairly low cost. However, these methods have also been described with several problems and limitations. The purpose of this study was to test the applicability of two selected high-throughput methods, cDNA and tissue microarrays (TMA), in cancer research. Two common human malignancies, breast and colorectal cancer, were used as examples. This thesis aims to present some practical considerations that need to be addressed when applying these techniques. cDNA microarrays were applied to screen aberrant gene expression in breast and colon cancers. Immunohistochemistry was used to validate the results and to evaluate the association of selected novel tumour markers with the outcome of the patients. The type of histological material used in immunohistochemistry was evaluated especially considering the applicability of whole tissue sections and different types of TMAs. Special attention was put on the methodological details in the cDNA microarray and TMA experiments. In conclusion, many potential tumour markers were identified in the cDNA microarray analyses. Immunohistochemistry could be applied to validate the observed gene expression changes of selected markers and to associate their expression change with patient outcome. In the current experiments, both TMAs and whole tissue sections could be used for this purpose. This study showed for the first time that securin and p120 catenin protein expression predict breast cancer outcome and the immunopositivity of carbonic anhydrase IX associates with the outcome of rectal cancer. The predictive value of these proteins was statistically evident also in multivariate analyses with up to a 13.1- fold risk for cancer specific death in a specific subgroup of patients.
Resumo:
High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.
Resumo:
L’implication des protéines tyrosines phosphatases (PTPs) dans la régulation de la signalisation et la médiation des fonctions cellulaires a été bien établie dans les dernières années. Cependant, les mécanismes moléculaires par lesquels les PTPs régulent les processus fondamentaux tels que l’angiogenèse demeurent méconnus. Il a été rapporté que l’expression de la PTP DEP-1 (Density-enhanced phosphatase 1) augmente avec la densité cellulaire et corrèle avec la déphosphorylation du récepteur VEGFR2. Cette déphosphorylation contribue à l’inhibition de contact dans les cellules endothéliales à confluence et diminue l’activité du VEGFR2 en déphosphorylant spécifiquement ses résidus catalytiques Y1054/1059. De plus, la plupart des voies de signalisation en aval du VEGFR2 sont diminuées sauf la voie Src-Gab1-AKT. DEP-1 déphosphoryle la Y529 de Src et contribue à la promotion de la survie dans les cellules endothéliales. L’objectif de cette thèse est de mieux définir le rôle de DEP-1 dans la régulation de l’activité de Src et les réponses biologiques dans les cellules endothéliales. Nous avons identifié les résidus Y1311 et Y1320 dans la queue C-terminale de DEP-1 comme sites majeurs de phosphorylation en réponse au VEGF. La phosphorylation de ces résidus est requise pour l’activation de Src et médie le remodelage des jonctions cellules-cellules dépendantes de Src. Ce remodelage induit la perméabilité, l’invasion et la formation de capillaires en réponse au VEGF. Nos résultats démontrent que la phosphorylation de DEP-1 sur résidu tyrosine est requise pour diriger la spécificité de DEP-1 vers son substrat Src. Les travaux révèlent pour la première fois un rôle positif de DEP-1 sur l’induction du programme angiogénique des cellules endothéliales. En plus de la phosphorylation sur tyrosine, DEP-1 est constitutivement phosphorylé sur la thréonine 1318 situé à proximité de la Y1320 en C-terminal. Cette localisation de la T1318 suggère que ce résidu pourrait être impliqué dans la régulation de la Y1320. En effet, nous avons observé que la T1318 de DEP-1 est phosphorylée potentiellement par CK2, et que cette phosphorylation régule la phosphorylation de DEP-1 sur tyrosine et sa capacité de lier et d’activer Src. En accord avec ces résultats, nos travaux révèlent que la surexpression du mutant DEP-1 T1318A diminue le remodelage des jonctions cellules-cellules et par conséquent la perméabilité. Nos résultats suggèrent donc que la T1318 de DEP-1 constitue un nouveau mécanisme de contrôle de la phosphorylation sur tyrosine et que ceci résulte en l’activation de Src et l’induction des fonctions biologiques des cellules endothéliales en réponse au VEGF. Suite à ces travaux dans les cellules endothéliales qui démontrent un rôle positif de DEP-1 dans la médiation des réponses angiogéniques, nous avons voulu approfondir nos connaissances sur l’implication potentielle de DEP-1 dans les cellules cancéreuses où l’activité de Src est requise pour la progression tumorale. Malgré le rôle connu de DEP-1 comme suppresseur tumoral dans différents types de cancer, nous avons émis l’hypothèse que DEP-1 pourrait promouvoir les fonctions biologiques dépendantes de Src telles que la migration et l’invasion dans les cellules cancéreuses. Ainsi, nous avons observé que l’expression de DEP-1 est plus élevée dans les lignées basales de cancer du sein qui sont plus invasives comparativement aux lignées luminales peu invasives. Dans les lignées basales, DEP-1 active Src, médie la motilité cellulaire dépendante de Src et régule la localisation des protéines impliquées dans l’organisation du cytosquelette. L’analyse d’un micro-étalage de tissu a révélé que l’expression de DEP-1 est associée avec une réduction tendencielle de survie des patients. Nos résultats proposent donc, un rôle de promoteur tumoral pour DEP-1 dans la progression du cancer du sein. Les travaux présentés dans cette thèse démontrent pour la première fois que DEP-1 peut agir comme promoteur des réponses angiogéniques et du phénotype pro-invasif des lignées basales du cancer du sein probablement du à sa capacité d’activer Src. Nos résultats suggèrent ainsi que l’expression de DEP-1 pourrait contribuer à la progression tumorale et la formation de métastases. Ces découvertes laissent donc entrevoir que DEP-1 représente une nouvelle cible thérapeutique potentielle pour contrer l’angiogenèse et le développement du cancer.
Resumo:
Serological typing of Escherichia coli O antigens is a well-established method used for differentiation and identification of O serotypes commonly associated with disease. In this feasibility study, we have developed a novel somatic antibody-based miniaturized microarray chip, using 17 antisera, which can be used to detect bound whole-cell E. coli antigen with its corresponding immobilized antibody, to assess the feasibility of this approach. The chip was tested using the related 17 control strains, and the O types found by the microarray chip showed 100% correlation with the O types found by conventional typing. A blind trial was performed in which 100 E. coli isolates that had been O serotyped previously by the conventional assay were tested by the array approach. Overall, the O serotypes of 88% of isolates were correctly identified by the microarray method. For several isolates, ambiguity of O-type designation by microarray arose due to increased sensitivity of this method, allowing signal intensities of cross-reactions to be quantified. Investigation of discrepancies between conventional and microarray O serotyping indicated that some isolates upon storage had become untypeable and, therefore, gave poor signal intensity when tested by the microarray or retested by conventional means. For all 20 serotype O26 and O157 isolates, the apparent discrepancy in O serotyping was analyzed further by a third independent test, which confirmed the microarray results. Therefore, the use of miniaturized protein arrays increases the speed and efficiency of O serotyping in a cost-effective manner, and these preliminary findings suggest the microarray approach may have a higher accuracy than those of traditional O-serotyping methods.
Resumo:
Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.
Resumo:
The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P<0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P<0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells. (C) 2008 Wiley-Liss, Inc.
Resumo:
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Resumo:
Paracoccidioides brasiliensis is a thermally dimorphic fungus, and causes the most prevalent systemic mycosis in Latin America. Infection is initiated by inhalation of conidia or mycelial fragments by the host, followed by further differentiation into the yeast form. Information regarding gene expression by either form has rarely been addressed with respect to multiple time points of growth in culture. Here, we report on the construction of a genomic DNA microarray, covering approximately 25% of the genome of the organism, and its utilization in identifying genes and gene expression patterns during growth in vitro. Cloned, amplified inserts from randomly sheared genomic DNA (gDNA) and known control genes were printed onto glass slides to generate a microarray of over 12 000 elements. To examine gene expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, especially at earlier time points, and that mycelial gene expression changed less than gene expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes (of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and toxins), regulatory proteins and transcription factors. Mycelial genes involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and toxin and sugar transport showed differential expression. Sequenced clones were compared with Histoplasma capsulatum and Coccidioides posadasii genome sequences to assess potentially common pathways across species, such as sulfur and lipid metabolism, amino acid transporters, transcription factors and genes possibly related to virulence. We also analysed gene expression with time in culture and found that while transposable elements and components of respiratory pathways tended to increase in expression with time, genes encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in expression over time, particularly in yeast. These findings expand our knowledge of the different morphological forms of P. brasiliensis during growth in culture.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: To evaluate the Bcl-2, Bax, Bad and Bak immunoexpression in tumor and nontumorous tissue of 130 patients with colorectal carcinoma submitted to surgery at São Paulo Hospital, EPM/ UNIFESP, from 2002 to 2005, and to correlate the immunoexpression data with the apoptotic index (AI, obtained by anti-cleaved caspase 3 and M30 labeling), cell proliferation score (CPS, obtained by Ki-67), immunoexpression of p53 and patient’s clinical prognosis. Results: Positive correlation was verified between Bcl-2 protein family in tumor and nontumor tissue. Only Bcl-2 protein correlated with IA and CPS in the tumor. Positive correlation was observed between pro- -apoptotic proteins and Bcl-2 protein. In the adjacent mucosa, Bcl-2 correlated with Ki-67 and p53, but not with IA. Carcinomas exhibited higher immunoexpression of CPS and IA markers. No correlation occurred between immunoexpression data and patient survival. Conclusion: Positive correlation was observed between the pro-apoptotic proteins of the Bcl-2 family and the anti-apoptotic protein Bcl-2. In the adjacent nontumor mucosa, Bcl-2 correlated with Ki-67 and p53, but not with AI. Carcinomas presented greater immunoexpression for CPS and AI markers; however immunoexpression of these markers was not correlated with patient survival.
Resumo:
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Resumo:
Introduction: Ovarian adenocarcinoma is frequently detected at the late stage, when therapy efficacy is limited and death occurs in up to 50% of the cases. A potential novel treatment for this disease is a monoclonal antibody that recognizes phosphate transporter sodium-dependent phosphate transporter protein 2b (NaPi2b). Materials and Methods: To better understand the expression of this protein in different histologic types of ovarian carcinomas, we immunostained 50 tumor samples with anti-NaPi2b monoclonal antibody MX35 and, in parallel, we assessed the expression of the gene encoding NaPi2b (SCL34A2) by in silico analysis of microarray data. Results: Both approaches detected higher expression of NaPi2b (SCL34A2) in ovarian carcinoma than in normal tissue. Moreover, a comprehensive analysis indicates that SCL34A2 is the only gene of the several phosphate transporters genes whose expression differentiates normal from carcinoma samples, suggesting it might exert a major role in ovarian carcinomas. Immunohistochemical and mRNA expression data have also shown that 2 histologic subtypes of ovarian carcinoma express particularly high levels of NaPi2b: serous and clear cell adenocarcinomas. Serous adenocarcinomas are the most frequent, contrasting with clear cell carcinomas, rare, and with worse prognosis. Conclusion: This identification of subgroups of patients expressing NaPi2b may be important in selecting cohorts who most likely should be included in future clinical trials, as a recently generated humanized version of MX35 has been developed.
Resumo:
Topoisomerase 2 alpha (), HER-2/ and are genes that lie on chromosome 17 and correlate with the prognosis and prediction of target-driven therapy against tumors. In a previous study, we showed that TOP2A transcripts levels were significantly higher in soft tissue sarcomas (STS) than in benign tumors and desmoid-type fibromatoses (FM). Because these genes have been insufficiently examined in STS, we aimed to identify alterations in TOP2A and HER-2 expression by fluorescent in situ hybridization and immunohistochemistry, as well as that of survivin, and correlate them with clinicopathologic findings to assess their prognostic value. Eighteen FM and 244 STS were included. Fluorescent in situ hybridization and immunohistochemistry were performed on a tissue microarray. TOP2A and survivin were more highly expressed in sarcomas than in FM. TOP2A was an independent predictor of an unfavorable prognosis; it was combined with formerly established prognostic factors (primarily histologic grade and tumor size at diagnosis) to create a prognostic index that evaluated overall survival. Gene amplification/polysomy (13%) did not correlate with protein overexpression. Survivin and HER-2 expression were not associated with patient outcomes. These findings might become valuable in the management of patients with STS and possibly in the prospective evaluation of responses to new target-driven therapies.